
FILS, English Stream, Year 3
Course: Software Development Methods
Prof. Luca Dan Serbanati

“E-Film Hiring” Project

FIFTH MACRO-ACTIVITY: MODELLING BEHAVIOUR WITH STATECHART

DIAGRAMS

Deliveries: Statechart Diagrams (belonging to the Design Model)

An event is a significant or noteworthy occurrence.
A state is the condition of an object at a moment in time during the time between two significant
events.
A transition is a relationship between two states that indicates that when an event occurs, the object
moves from the prior state to the subsequent state. A statechart diagram shows the lifecycle of an
object: what events it experiences, its transitions, and the states it is in between these events. A
statechart diagram may be applied to classes (conceptual or software) and use cases. Since an entire
"system" may be represented by a class, it may have its own statechart diagram, too. A statechart
diagram that depicts the overall system events and their sequence within a use case is a kind of use
case statechart diagram.
If, for all events of interest, an object always reacts the same way, it is a state independent object. By
contrast, state-dependent objects react differently to events depending on their state. These are the
objects we study with statechart diagrams.
In general, business information systems have a minority of interesting state dependent classes. By
contrast, process control and telecommunication domains often have many state-dependent objects.
Here is a list of common objects which are usually state-dependent:

- Use cases (often is useful to view a use case implemented as a class)
- Stateful sessions (These are server-side software objects representing ongoing sessions or

conversations with a client. The software class representing a use case may be also considered
a stateful session object).

- Systems
- Windows
- Controllers
- Transactions
- Devices
- Classes which change their role in application during execution (a child Person becomes a

young Person, then the later one becomes an adult Person, and so on).
When a statechart diagram model is also needed? When during design and implementation work, it is
necessary to create and implement a design that ensures no out-of-sequence events occur. For example,
a system which manages sales should not be allowed to receive a payment unless a sale is complete
and code must be written to guarantee that. Given a set of use case statechart diagrams, a designer can
methodically develop a design that ensures correct system event order.
Procedure
1. Create statecharts for state-dependent objects with complex behavior. Give care to objects with
concurrent behaviour: they have orthogonal lifecycles.
2. If complex (i.e. many distinct states), organize hierarchically statechart diagrams.

Objects of ControllerSubscription class

2. Objects of the Hiring class

Created

entry/ hiringDate=currentDate

Cost computed

do/ t̂s.getCostItems
do/ cost+=costItems*nrDays

computesCost

Hiring
memorized

destroy

made hiring

Initialized

create(TemporaryStock)[temporary stock non-empty]

create

DelayedHiring

entry/ computes cost
verifyHiringPeriod[execeeded period]

Lost item

entry/ computes cost

Data items
memorized

verifyItems[lost item]

[more items]

destroy

destroy

returned hiring

Activated

entry/ cf=new create
do/ ĉf.show

SubscriptionCreated

entry/ verify
do/ s=new create
do/ ŝ.computeCost
exit/ ĉf.show

press "create subscription" r̂equestSubscription

press "send" ŝendDataSubscription(String, String, String, String, String, Integer)

SubscriptionMemorized

do/ d̂bm.memorize(s)

press "Print" p̂rint

