FILS

Software Development Method, 111/6(2), 3C-1L-1P, E, 5

Course description

Prerequisite(s) &
Corequisite(s)

Textbook(s) and web
materials

Prof. Luca Dan Serbanati

Software development methods are used to contribute to the software
process. They prescribe human actions and activities, tools, and intermediate
products for developing software systems and claim to improve characteristics
of the software (e.g., reliability) or its production (e.g., total cost or schedule
predictability). As a course topic Software Development Methods is a subset of
the Software Engineering field.

Many software development methods have come into practice over the last
decades, and new methods are emerging. The new methods are more
powerful than the old ones, but many of their concepts, guidelines, or
techniques are alike. The course chose the object-oriented method, but aims
to put emphasis on what is inherent, persistent in all software development
methods.

Usually, the software development methods focus on two activities in the
software process: analysis and design.

Analysis is concerned with understanding the "real world" we are studying (the
problem domain) sufficiently well to allow its modeling. Design is concerned
with the mapping of the analysis results in an implementable-by-software
form.

Analysis and design methodologies promote development of software systems
using development visual languages and CASE tools as part of a team's project.
The Unified Modeling Language (UML) is currently the industry standard for
communicating many of object-oriented development artifacts. In this course
UML is the vehicle for learning Object-Oriented Analysis and Design.

The last but not the least, software comes out from an analysis of its future
environment. This is why the course outlines some techniques of the system
analysis field, too.

“Object Oriented Programming”, “Algorithms and Data Structures”, and
“Formal Languages & Compilers” . Knowledge and experience of programming
in a high-level imperative language (Java, C++, or C). This course will find its
natural achievement in the course “Software Engineering”.

The Software Process

¢ R.S.Pressman, Software Engineering: A Practitioner's Approach , 7/e
McGraw-Hill, 2003.

e L.D.Serbanati, Integrating Tools for Software Development, Yourdon Press
Computing Series, Prentice Hall, 1992.

Object Oriented Methods

¢ G. Booch, J, Rumbaugh, I. Jacobson, The Unified Modeling Language. User
Guide , Addison-Wesley, 1999.

e M. Fowler, Uml Distilled: A Brief Guide to the Standard Modeling Language,
2/e, Addison-Wesley, 1999.

¢ C. Larman, Applying UML and Patterns-An Introduction to Object-Oriented
Analysis and Design and the Unified Process, 3/e, Prentice Hall, 2004.

e www.uml.org/



Course objectives

Topics covered

The objective of this course is to explore the methods and techniques of
systems development from both a theoretical and applied perspective. Upon
successful completion of the course, the student should be able to meet the
following specific objectives:

® Be able to perform systems and software analysis and design

* Have skills to partition a system in logical and physical views according to
relevant aspects and then integrate them in a unique artifact

¢ Be able to compare and choose intelligently from among methods, tools, and
techniques of systems and software analysis and design

e Contribute as a team member in analysis and design projects

¢ To understand how to specify analysis and design in terms of several
conceptual modeling tools as UML's diagrams.

e Introduction to Systems Engineering . Systems, information systems, and
software systems. Separation of concerns (3h)

e Introduction to Software Engineering. The Software Process . Capability
Maturity Model. Software life cycle models. The Unified Process. (3h)

e Introduction to object-orientation . Concepts. Semantic relationships.
Abstraction, encapsulation. Classes and objects. UML notation for classes.
Relationships. Generalization vs. inheritance. Polymorphism. Association.
Aggregation and composition. Class diagrams (5h)

¢ Business Modeling . Business components: Business Cases, Business Objects,
and Business Process. Control and object flows. Activity diagrams. (6h)

* Requirements Analysis. Functional and Non-Functional Requirements.
Actors. System boundaries. Context diagram. Use case descriptions. Use case
extension mechanisms. ldentifying actors and use cases (3h)

* Sequence diagrams. System operations. Operation contracts. (3h)

e Software System Analysis. Structural Modeling . Identification of classes and
relationships between them. ldentifying attributes, operations and
relationships. The Problem Domain Model. (3h)

* Behavior Modeling. Inter-objects messages. Interactions. Responsibility and
collaborations. CRC cards. Sequence Diagrams. Overview Diagrams.
Communication Diagrams. Patterns for Assignment of Responsibilities (6h)

¢ Architectural Design. Software modularity: cohesion and coupling.
Subsystems. Subsystem communications. Package diagrams. Architectural
Styles (4h)

¢ Design Classes . Ul classes. Controllers. Persistence classes. Application Class
Diagram (3h)

¢ Modeling objects’ dynamics . States, events, automata. Statechart diagrams.
Concurrency in UML. (2h)



Laboratory

Project

Grading

Professional

e Component-based software development . Component diagrams. (2 h)
e System deployment . Deployment diagrams. (1h)
This is a list of the main laboratory topics:

1. Business Analysis and Modelling

Deliverable: Business Model - Activity Diagrams

2. Software Requirements Analysis

Deliverable: Use Case Model

3. Software Requirements Analysis

Deliverable: Functional Model - System Sequence Diagram & System Operation
Contracts

4. Software System Analysis. Domain Modeling

Deliverable: Structural Model - Class Diagram

5. Software System Analysis. Behavior Modeling

Deliverable: Interaction Diagrams

6. From Requirements To Design . Design Classes. Object Dynamicity Modeling
Deliverable: Application Class Diagram and Statechart Diagrams

7. Refining the Models and Architectural Design

Deliverable: Package Diagram

There are about 7 assignments, due two weeks after the student get them.
They put into practice modelling activities common in software development.
Assignments should be prepared for the next class period. Some may be
collected for grading; others will be reviewed in class with the aid of available
CASE tools.

Attendance at each laboratory is required!

The project to be undertaken may be a team or one person project .

When the project is a team-based project each student is expected to work as
a member of your group in this course and cooperate with his/her colleagues.
Each group will be responsible for assigning tasks to its team members, but the
instructor must be informed about this assignment.

Each of the seven homework assignments will contribute to fulfil the final
project. The project is a requirement for the competition of the course and will
be graded individually, thus it is the responsibility of the students to document
and give full details on his/her contribution to the project.

The project has to be entirely implemented.

Grading will be as follows:

e 40% Final exam consists of a written answer to a quiz and a closed-book
test consisting in analysis and design of a small application.

e 20% Homework assignments, two tests and personal contribution to
laboratory classes. The points per assignment will vary depending
importance and effort.

e 40% Project assignments. The points will vary depending the proposed
solution, CASE tools usage, documentation quality, and effort.

The course is a very conceptual class. Its main goal is the development of an



significance understanding of abstract analysis, design, and modeling techniques and to
provide attendees with in-depth coverage of the concepts needed to
effectively analyze and design software systems. This class provides skills
suitable to some roles in the software process as the business analyst, software
analyst, and software architect.



