

Course name Semester Hours Final exam. Credits

Object Oriented Programming I/2 2Course-2Lab. E
5

Course
description

This course resumes the introduction to object-oriented programming with new
object-oriented concepts: inheritance, class reusing, polymorphism, object-
oriented containers, object factories, and exception handling. It also covers
some specific charecteristics of the Java language (applets, graphics, event
handling, threading), and applies object-orientation concepts to the design,
coding, and testing of Java programs. Students in the course should expect to
spend a fair amount of time on their own developing programs. Programming,
like most other skills, is best learned by doing.

Prerequisite(s)&
Corequisite(s)

Programming concepts and design recipes taught in “ Programming languages
” are prerequisites.

Textbook(s) and
web materials

1. C. S. Horstmann and G. Cornell, Core Java 2: Vol.1 - Fundamentals , 7/e,
Prentice Hall, 2005.
2. Deitel & Deitel, Java: How to Program , 4/e, Prentice Hall, 2003.
3. D. Geary, Graphic Java 2, v.1 - Mastering the JFC, 3/e, v.2 - Swing, Sun
Microsystems Press, 1999-2000.
4. B. Eckel, Thinking in Java , 3/e, Prentice Hall.
5. www.java.sun.com

In Romanian:
6. A. Athanasiu et al., Limbajul Java. O perspectiva pragmatica , Ed. Agora,
1996.
7. S.Tanasa, C.Olaru, S.Andrei, Java de la 0 la expert , Polirom, 2003.

Course
objectives

The course objectives are:

• To present advanced programming concepts in Java language .
• To develop skills in the software design and programming using Java

and its standard class libraries.
• To develop understanding of problems and build skills in the use of

abstraction in order to manage the problem complexity.

A student completing this course should:
1. Be able to design and write Java programs to solve complex problems that
meet requirements expressed in natural language.
2. Have a clear understanding of how a complex program is built in Java.
3. Have a deeperunderstanding of the semantics of object-oriented programs
in terms of responsibility and collaboration.
4. Have a first approach to UML and various stages of the software
development process.

Topics covered Review of some basic object-oriented concepts. Concept instances vs.
objects. Data and algorithm encapsulation. Instance and local variables.
Instance methods. Parameter passing. Method overloading. static modifier.
Basic input/output (2h)
Inheritance. extends relationship. Method overriding. Static vs. dynamic
binding. Polymorphism. Constructors revisited. Class hierarchies. The
protected modifier. The Object class. Command line arguments. Abstract

classes and methods. Wrappers. ArrayList, an extendible array. (4h)
Interfaces. Interface definitions. Type conversions. Object Cloning. Inner
Classes. (4h)
Applets. Communication in web. HTTP protocol. HTML language. HTML tags
and attributes. The applet context. Applet structure. Drawing on applets. Applet
parameters. (3h)
Graphic programming. The java.awt package. Object container concept.
Graphic components. The Graphics class. Colors. Fonts. Dealing with images.
Populating a container with components. Frames vs. applets. Container layout
management. (4h)
Event handling. Event-driven paradigm. The AWT event hierarchy. Event
listeners and adapters. Event multicasting. The Observer pattern. (3h)
Exception handling. Dealing with errors. Catching exceptions. Logging.
Assertions. Debugging techniques. (2h)
Advanced input/output. More about the java.io package. Dealing with web
resources. (2h)
Collections framework. Collection and Map hierarchies. Putting collections
and maps to use. List and tree processing. Sorting and search algoritms. (4h)

Laboratory This is a list of the main laboratory topics:

1. Review of the Java language. Class definition. I/O. Arrays.
2. Inheritance and polymorphism.
3. Inheritance. Abstract classes.
4. Interfaces. Inner classes.
5. Applets.
6. Programming graphical interfaces.
7. Event handling.
8. Observer.
9. Exception handling.
10. I/O with files. Introduction to collections.
11. Sorting and searching algorithms with Java collections.
12. Recapitulative exercises. Final exam simulation.
13-14. Laboratory and test redoing.

There are 10 short assignments (exercises published in the course site in the
weekend before the laboratory class) and few small projects.

• The short assignments will cover all chapters of the course and put into

practice concepts of object-oriented programming, and their relationship to
the Java language. Assignments should be prepared for the next class
period. Some may be collected for grading; others will be reviewed in class
using Java 1.4 SDK that is available on the lab PCs. The student is
strongly encouraged to install a copy on your own PC from the Sun web
site.

• The projects give the students an opportunity to integrate their knowledge
from all the topics covered during laboratory classes and apply them to a
problem in an area that interests them.

Attendance at each laboratory is required. Only two laboratory sessions can be
re-done!

Grading 40% Final exam (one or two programs to be developed)
60% Semester activity
- Labs and lectures attendance (10%)
- 2 pre-announced tests (30%). Attendance at tests is required. Only one test
can be re-done!

- Lab activity/homework assignements (20 %). The points per assignment will
vary depending importance and effort.

Professional
significance

This course is about computer programming using advanced topics of the
object-oriented paradigm. It emphasizes principles of sound design and good
programming practice, aimed at developing programs of high quality and
maintainability. Perseverence and discipline are mandatory attitudes in object-
oriented software development. Programmers derive great satisfaction from
seeing their object-oriented designs come to life, but they have to invest a lot of
time and thought. Upon completion of the course, participants will have both
the theoretical knowledge and practical experience to use Java to design
quality programs of any complexity. This course actually belongs to the
background of any engineering field.

