FILS Course: Compiler Techniques

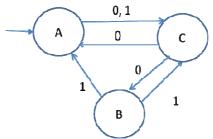
Homework #1

FLA review

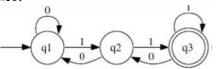
- 1. Construct a grammar over $\{a, b, c\}$ whose language is $\{a^n b^m c^{2n+m} | n, m>0\}$.
- **2.** Let N be an NFA with n states and let M be a DFA with m states recognizing the same language. Which of the followings is necessary true?
 - (A) $m \le 2^n$.
 - (B) n<=m.
 - (C) M has one accept state.
 - (D) $m=2^{n}$.
- **3.** Construct a DFA that takes inputs of 0 and 1 and accepts only strings with even number of 0 and odd number of 1.
- **4.** Design one DFA which takes 0s and 1s as input string and accepts that binary number which is divisible by 3.
- 5. Construct a DFA equivalent to $M=(\{a_1, a_2, a_3, a_4\}, \{0, 1\}, d, q_1, \{q_4\})$ where d is given below:

State	0	1
q_1	q_1, q_2	q_1
q_2	q_3	q_2
q ₃	q_4	q_4
q_4		\mathbf{q}_3

6. Construct a DFA against the following NFA.



7. Given a state diagram of DFA M1. Is 000111 accepted? But 10110? What set of strings accepts M1?



- 8. Find a deterministic finite-state automaton that recognizes each of the following sets.
 - a) {0}
 - b) {1, 00}
 - c) $\{1^n | n = 2, 3, 4, ...\}$
- 9. Find a non-deterministic finite-state automaton that recognizes each of the following sets.a) {0}
 - b) {1, 00}
 - c) $\{1^n | n = 2, 3, 4, ...\}$
- **10.** For each of the following regular expressions r construct finite automata recognizing the language L(r):

(a) a*

(b) (a* + b*).
(c) (a b)*.
(d) (a* + b*) (a b)*.
(e) (a | b)*.
(f) (a* | b*)*.
(g) ((ε | a) b*)*.
(h) (a+b)*(aa+bb)(a+b)*

11. Convert the linear grammar below with start symbol q_0 and productions

 $\begin{array}{l} q_{0} \rightarrow \epsilon \\ q_{0} \rightarrow abq_{0} \\ q_{0} \rightarrow cq_{1} \\ q_{1} \rightarrow ab \end{array}$

into an NFA with ε -transitions whose language is that generated by the grammar and then into a regular grammar.

- 12. Write a program that builds deterministic finite-state automaton from regular expressions, using a table of ε -transitions. You can use any programming language.
 - **a.** Implement a representation (e.g. class) of the deterministic finite-state automaton.
 - **b.** Build the prefix form of the initial regular expression.
 - **c.** Build the transition table.
 - **d.** Test the DFA.
- **13.** Construct the minimum automaton of the following DFA.

State	0	1
q_1 (initial)	q_2	q_6
q_2	\mathbf{q}_7	q_3
q ₃ (final)	\mathbf{q}_1	q ₃
q_4	q ₃	q ₇
\mathbf{q}_5	q_8	\mathbf{q}_6
q_6	q ₃	q ₇
\mathbf{q}_7	\mathbf{q}_7	\mathbf{q}_5
q_8	\mathbf{q}_7	\mathbf{q}_3

- 14. Consider the CFG: S->0S0| 00. Calculate the language generated by it.
- **15.** Consider the CFG: S->aSAbl ε A->bAl ε . Calculate the language generated by it.
- **16.** Consider the ambiguous CFG:

 $E \rightarrow E + E$

 $E\text{->}(E^*E)$

E->id

Which of the following strings have more than one parsing tree when parsed according to the above grammar:

- **a.** id+id+id+id
- **b.** id+(id*(id*id))
- **c.** (id*(id*id))+id
- **d.** ((id*id+id)*id)
- **17.** Well-balanced parenthesis. Write a context-free grammar that generates a well-balanced sequence of parenthesis like: (), ()(()), ((()) ((() ()))).

- **18.** What is the maximum number of **reduce** moves that can be taken by a bottom-up parser for a grammar with no ε and unit-productions (no A->B production) to parse a tree string with n tokens?
 - a. n/2
 - b. n-1
 - c. 2n-1
 - d. 2ⁿ
- **19.** For each of the following languages, indicate whether the language is regular, context-free or context-sensitive, and provide a generative grammar.

a.
$$\mathbf{L} = \{\mathbf{a}^n \mathbf{b}^n \mid n \ge 0\}$$

b. $L = \{a^m b^n \mid m > 0 \land n \ge 0\}$

- c. All strings over $\{a, b, c\}$ that contain an even number of a's.
- d. $L = \{w || w | is odd\}$
- **20.** Let $G = (V, \Sigma, R, S)$ be a context-free grammar such that $V = \{E, T, F\}$,
- $\Sigma = \{a, +, *, (,)\}, S = E \text{ and } R \text{ is:}$

$$E \rightarrow E + T \mid T$$
$$T \rightarrow T * F \mid F$$
$$F \rightarrow (E) \mid a$$

Give parse trees and leftmost derivations for the following strings.

- a. a
- b. a*(a+a)
- c. a+a+a
- d. ((a+(a)))
- **21.** Answer each part for the following context-free grammar.
- $\mathsf{R} \to \mathsf{X}\mathsf{R}\mathsf{X} \mid \mathsf{S}$
- $S \to a T b \mid b T a$
- $T \to XT \; X \mid X \mid \epsilon$
- $X \to a \mid b$
 - a. What are the variables and terminals of G? Which is the start symbol?
 - **b.** Give three examples of strings in L(G).
 - c. Give three examples of strings not in L(G).