
Learn by your own the following design patterns:

Def1: Reusable solutions to commonly occurring problems.

Def2: OO design patterns are descriptions of communicating objects and classes that are customized to solve a

general design problem in a particular context.

Each pattern has:

· name

· problem – when to apply the problem

· solution – elements that make up t

· consequences – results and trade

Reference:

The course lectures: http://www.serbanati.com/poli/Lecture_Notes/ARCH/ARCH_Chap1.pdf

https://www.oodesign.com/

https://medium.com/@ronnieschaniel/object

84807445b092

https://medium.com/@adeshsrivastava0/decorator

Please, read descriptions for Adapter, Strategy, and Chain of Res

Object Pool.

Object pool pattern is a software creational design pattern which is used in situations where the cost of initializing a

class instance is very high. Object Pool Pattern says

Basically, an Object pool is a container which contains a specified amount of objects. Objects in the pool have a

lifecycle: creation, validation and destroy.

is put back. A pool helps us to manage available resources in a better way.

clients who need the same resource at different times. There are many using examples: especially in application

servers where there are data source pools, thread pools

Prototype

Prototype pattern refers to creating duplicate object while keeping performance in mind. This type of design pattern

comes under creational pattern and provides one of the best ways to create an object.

This pattern involves implementing a prototype interface which tells to create a clone of the current object. This

pattern is used when creation of object directly is costly. For example, an object is to

database operation. We can cache the object, returns its clone on next request and update the database as and

when needed thus reducing database calls.

Software Architectures

Lab. 3. Homework

the following design patterns: Object Pool, Prototype, Iterator, and Observer

Generalities about design patterns

: Reusable solutions to commonly occurring problems.

are descriptions of communicating objects and classes that are customized to solve a

general design problem in a particular context.

when to apply the problem

elements that make up the design, relationships, responsibilities and collaborations

results and trade-offs of applying the pattern

http://www.serbanati.com/poli/Lecture_Notes/ARCH/ARCH_Chap1.pdf

https://medium.com/@ronnieschaniel/object-oriented-design-patterns-explained-using-practical

https://medium.com/@adeshsrivastava0/decorator-design-patterns-3d6ed6d5aba9

Strategy, and Chain of Responsibility from references.

Object pool pattern is a software creational design pattern which is used in situations where the cost of initializing a

class instance is very high. Object Pool Pattern says us “to reuse the objects that are expensive to create".

Basically, an Object pool is a container which contains a specified amount of objects. Objects in the pool have a

lifecycle: creation, validation and destroy. When an object is taken from the pool, it is not available in

to manage available resources in a better way. It is also useful when there are several

clients who need the same resource at different times. There are many using examples: especially in application

there are data source pools, thread pools, component pools, etc.

Prototype pattern refers to creating duplicate object while keeping performance in mind. This type of design pattern

provides one of the best ways to create an object.

This pattern involves implementing a prototype interface which tells to create a clone of the current object. This

pattern is used when creation of object directly is costly. For example, an object is to

database operation. We can cache the object, returns its clone on next request and update the database as and

when needed thus reducing database calls.

Observer.

are descriptions of communicating objects and classes that are customized to solve a

he design, relationships, responsibilities and collaborations

http://www.serbanati.com/poli/Lecture_Notes/ARCH/ARCH_Chap1.pdf

practical-examples-

Object pool pattern is a software creational design pattern which is used in situations where the cost of initializing a

that are expensive to create".

Basically, an Object pool is a container which contains a specified amount of objects. Objects in the pool have a

When an object is taken from the pool, it is not available in the pool until it

hen there are several

clients who need the same resource at different times. There are many using examples: especially in application

Prototype pattern refers to creating duplicate object while keeping performance in mind. This type of design pattern

This pattern involves implementing a prototype interface which tells to create a clone of the current object. This

pattern is used when creation of object directly is costly. For example, an object is to be created after a costly

database operation. We can cache the object, returns its clone on next request and update the database as and

The Prototype Registry provides an easy way to access

built objects that are ready to be copied.

Advantages: By using the prototype pattern we reduce the subclasses, have the ability to create unlimited

number of objects copies with different styles,

client code.

Disadvantages: Cloning objects can be difficult when their internals include objects that don’t support

copying or having circular references

Some notes for implementation:

– Each prototype class must explicitly implement the clone operation.

– The clone method returns a new prototypical version of the constructor

– If the client needs to initialize some objects with different values, you can define an Initialize operation

that takes initialization parameters as arguments and sets the clone’s internal state accordingly.

Iterator

This behavioral design pattern provides a way to access the elements of an aggregate

without exposing its underlying representation.

multiset, tree, graph, and by underlying representation we mean the way the container has been composed with its

methods and properties.

Participants

Iterator defines an interface for accessing and traversing elements.

ConcreteIterator implements the Iterator interface

aggregate.

Aggregate defines an interface for creating an Iterator

ConcreteAggregate implements the Iterator creation interface to return an instance of the proper ConcreteIterator

The Client is the ItemDisplayer.

The pattern Iterator is used in java.util.Iterator, java.util.Scanner and java.util.Enum

Observer

Observer pattern is a behavioral pattern

one-to-many relationship between objects such as if on

automatically. So, the Observer pattern is the gold standard in decoupling

each other.

Participants:

• the Subject: maintains a list of observers, provides methods to register/unregister observers. Also, has a

method to notify all registered observers of any state change

• SubjectImpl: the class extending the functionality of the

state. Note that t’s a good idea to have an immutable state

observer

• Observer: it’s an interface with an update()

changes in its current state

• ConcreteObserver: these are the classes implementing

themselves to listen to a Subject

provides an easy way to access frequently-used prototypes. It stores a set of pre

built objects that are ready to be copied.

By using the prototype pattern we reduce the subclasses, have the ability to create unlimited

copies with different styles, less resources and without needing any dependency in the

loning objects can be difficult when their internals include objects that don’t support

circular references

class must explicitly implement the clone operation.

The clone method returns a new prototypical version of the constructor

If the client needs to initialize some objects with different values, you can define an Initialize operation

initialization parameters as arguments and sets the clone’s internal state accordingly.

attern provides a way to access the elements of an aggregate/container

representation. An aggregate/container can be a collection of objects like

, and by underlying representation we mean the way the container has been composed with its

efines an interface for accessing and traversing elements.

mplements the Iterator interface and keeps track of the current position in the traversal of the

efines an interface for creating an Iterator object.

mplements the Iterator creation interface to return an instance of the proper ConcreteIterator

The pattern Iterator is used in java.util.Iterator, java.util.Scanner and java.util.Enumeration.

behavioral pattern that is used to form relationships between objects at runtime

many relationship between objects such as if one object is modified, its dependent objects are to be notified

he Observer pattern is the gold standard in decoupling - the separation of objects that depend on

maintains a list of observers, provides methods to register/unregister observers. Also, has a

method to notify all registered observers of any state change

the class extending the functionality of the Subject class, it holds a state object representing its current

t’s a good idea to have an immutable state object to prevent any unintentional updates by the

update() method which is invoked by the Subject to notify the observer of any

these are the classes implementing the Observer interface, the observer objects register

used prototypes. It stores a set of pre-

By using the prototype pattern we reduce the subclasses, have the ability to create unlimited

any dependency in the

loning objects can be difficult when their internals include objects that don’t support

If the client needs to initialize some objects with different values, you can define an Initialize operation

initialization parameters as arguments and sets the clone’s internal state accordingly.

/container object sequentially

collection of objects like list, set,

, and by underlying representation we mean the way the container has been composed with its

eeps track of the current position in the traversal of the

mplements the Iterator creation interface to return an instance of the proper ConcreteIterator

to form relationships between objects at runtime, for instance a

dent objects are to be notified

ration of objects that depend on

maintains a list of observers, provides methods to register/unregister observers. Also, has a notifyAll()

class, it holds a state object representing its current

object to prevent any unintentional updates by the

to notify the observer of any

interface, the observer objects register

The idea behind the pattern is simple

their interest with the Subject by attach

Observer may be interested in, a notify

Observer is no longer interested in the Subject's state, they can simply

The benefits here are quite clear. To pass data onto the observers, our subject doesn't need to know who needs to

know. Instead, everything is done through a common interface, and the notify method just calls all the objects out

there that have registered their interest. This is a very powerful decoupling

implement the Observer interface and get updates from the Subject.

In general, you want to use this pattern to reduce coupling. If you have

others, without knowing who those objects are, the Observer is exactly what you need.

The pattern Observer is used in the Java package Swing to implement event listeners

Exercise 1

Object Pool

Let’s take the example of the database connections.

connection objects. The creation of the connection object is an expensive work to do as it involves loading drivers,

validating the statements and several other things.

performance for several reasons:

• Creating a connection is an expensive operation.

• When there are too many connections opened it takes longer to create a

will become overloaded.

So, as a solution to the above problem, we will be creating a pool of connection objects. This pool will hold expensive

objects which can be distributed to clients as per the requirement.

provides a way to reuse and share them. It can also limit the maximum number of objects that can be created.

Design the model of the object pool of database connections.

number of new connections should be included in the model.

also be creating an interface to get the reusable objects from that pool

End of exercise 1

Exercise 2

Prototype

In this exercise, the Prototype pattern lets you produce exact copies of geometric objects, without coupling the code

to their classes. We're going to create an abstract class

representing circles, rectangles and squares

and returns their clone when requested.

Shape object.

End of exercise 2

Exercise 3

Iterator

Consider an application for a supermarket with various departments

VegetablesDepartment. Each department holds/encompasses a colle

interface which models the only means to

displayAllItems that gets the items from

structure (list, map, tree, etc.) for holding

the VegetableDepartment uses a Set to hold the items.

There is a problem in this implementation

The idea behind the pattern is simple - one of more Observers are interested in the state of a

attach/registering themselves. When something changes in our Subject that the

notify message is sent, which calls the update method in each Observer.

Observer is no longer interested in the Subject's state, they can simply detach/unregister themselves.

The benefits here are quite clear. To pass data onto the observers, our subject doesn't need to know who needs to

know. Instead, everything is done through a common interface, and the notify method just calls all the objects out

there that have registered their interest. This is a very powerful decoupling - meaning that any object can simply

implement the Observer interface and get updates from the Subject.

In general, you want to use this pattern to reduce coupling. If you have an object that needs to share it's state with

others, without knowing who those objects are, the Observer is exactly what you need.

The pattern Observer is used in the Java package Swing to implement event listeners (ActionListener)

Exercises

Let’s take the example of the database connections. Accessing a database involves the creation of

. The creation of the connection object is an expensive work to do as it involves loading drivers,

statements and several other things. It’s obviously that opening too many connections might affect the

Creating a connection is an expensive operation.

When there are too many connections opened it takes longer to create a new one and the database server

So, as a solution to the above problem, we will be creating a pool of connection objects. This pool will hold expensive

objects which can be distributed to clients as per the requirement. The object pool manages the connections and

a way to reuse and share them. It can also limit the maximum number of objects that can be created.

Design the model of the object pool of database connections. Pool creation and initialization with a configurable

number of new connections should be included in the model. Use for this the Factory Method design pattern.

also be creating an interface to get the reusable objects from that pool and return them to the pool

pattern lets you produce exact copies of geometric objects, without coupling the code

We're going to create an abstract class Shape and concrete classes extending the

circles, rectangles and squares. A class ShapeCache is defined which stores shape objects in a

and returns their clone when requested. PrototypPatternDemo, our demo class will use ShapeCache

supermarket with various departments like for instance BeveragesDepartment

Each department holds/encompasses a collection of items. Consider

means to access the information of these departments

gets the items from any department and prints them. Each department

for holding its collection. For instance, the BeveragesDepartment

uses a Set to hold the items. Let call aggregate such a collection of items.

in this implementation that should be solved:

s are interested in the state of a Subject and register

ing themselves. When something changes in our Subject that the

method in each Observer. When the

themselves.

The benefits here are quite clear. To pass data onto the observers, our subject doesn't need to know who needs to

know. Instead, everything is done through a common interface, and the notify method just calls all the objects out

meaning that any object can simply

an object that needs to share it's state with

(ActionListener).

database involves the creation of database

. The creation of the connection object is an expensive work to do as it involves loading drivers,

It’s obviously that opening too many connections might affect the

new one and the database server

So, as a solution to the above problem, we will be creating a pool of connection objects. This pool will hold expensive

pool manages the connections and

a way to reuse and share them. It can also limit the maximum number of objects that can be created.

Pool creation and initialization with a configurable

Use for this the Factory Method design pattern. We will

m to the pool.

pattern lets you produce exact copies of geometric objects, without coupling the code

classes extending the Shape class

which stores shape objects in a Hashtable

ShapeCache class to get a

BeveragesDepartment and

Consider also a Department

departments: a unique method

department uses a different data

BeveragesDepartment uses a Map whereas

a collection of items.

For the client (ItemDisplayer), the actual type used by a Department to store the Items should be transparent because

when we add a new department, the client code has not to change to enable iterating over the particular collection of

items present within the new department. This is why we should use the design principle of encapsulating what varies

to hide the particularity of collection implementations.

Analyze how the Iterator pattern can solve this problem and draw the application model that uses it.

End of exercise 3

Exercise 4

Observer

An e-commerce shop publishes its products in web and also articles about the benefits of its product lines.

If the product you want to purchase is out of stock, you may ask to be informed when the product becomes

available again. You provide your email and subscribe to the customer list. As soon as the product becomes

available, all customers are informed.

You may also visit the e-commerce shop website. If you read an article and like it, you may want to be informed

whenever a new article is posted on the website. You provide your email and subscribe to the reader list. As soon

as there is a new article posted on the website, all the readers are notified.

Model the notification process of the e-commerce shop using the Observer pattern.

End of exercise 4

