
Luca Dan Serbanati - Software Design Techniques

1

PART 1. DESIGN PATTERNS

Luca Dan Serbanati - Software Design Techniques

2

Design Patterns
OO design patterns = descriptions of communicating objects and classes that are

customized to solve a general design problem in a particular context.
Each design pattern systematically names, explains, and evaluates an important and

recurring design problem in object-oriented systems.
1. A design pattern is a frequently used abstraction of how the software should be

built.
2. A design pattern is a schema of a solution of a recurring problem.
3. A design pattern identifies and describes the key aspects of a common design

structure that make it useful for creating a reusable object-oriented design:
participating classes and instances, their roles and collaborations, and the
distribution of responsibilities.

• While architectural patterns and design patterns serve different purposes, they are
both valuable tools for solving different types of problems in software engineering.
Design patterns are more focused on solving specific coding and design challenges
within a single application, whereas architectural patterns address larger-scale
concerns that span multiple components, services, or systems. They deal with
higher-level system and architectural concerns related to fault tolerance, reliability,
and resilience in distributed systems.

Three Types of Design Patterns
Creational patterns
• Creational patterns are used to create objects of the right class for a problem,

generally when instances of several different classes are available. They're
particularly useful when you're taking advantage of polymorphism and need to
choose between different classes at runtime rather than compile time.

Structural patterns
• Structural patterns form larger structures from individual parts, generally of

different classes. Structural patterns vary a great deal depending on what sort of
structure is being created for what purpose.

Behavioral patterns
• Behavioral patterns describe interactions between objects. They focus on how

objects communicate with each other. They can reduce complex flow charts to
mere interconnections between objects of various classes. Behavioral patterns are
also used to make the algorithm that a class uses simply another parameter that's
adjustable at runtime.

Luca Dan Serbanati - Software Design Techniques

3

Luca Dan Serbanati - Software Design Techniques

4

Design Patterns Taxonomy (GoF)
Fundamental Design Patterns

Role: the most important design patterns to know. Used extensively in other DPs.
Delegation, Interface, Abstract Superclass, Marker Interface, Proxy

Creational Design Patterns
Role: they provide guidance on how to create objects at runtime. They tell us how
to structure and encapsulate these decisions.
Factory Method, Abstract Factory, Builder, Prototype, Singleton, Object Pool

Structural Design Patterns
Role: describe common ways that different types of objects can be organized to
work with each other.
Layered Initialization, Filter, Composite, Adapter, Iterator, Bridge, Façade,
Flyweight, Dynamic Linkage, Virtual Proxy, Decorator, Cache Management

Behavioral Design Patterns
Role: they are used to organize, manage, and combine behavior, i.e. interactions
and resposability distribution.
Chain of Responsability, Command, Interpreter, Mediator, Snapshot, Observer,
State, Null Object, Strategy, Template Method, Visitor

Design Patterns Space
Luca Dan Serbanati - Software Design Techniques

5

The patterns are
inter-related!

Luca Dan Serbanati - Software Design Techniques

6

Luca Dan Serbanati - Software Design Techniques

7

Design Pattern Complete Description (I)
• Pattern Name and Classification. The pattern's name conveys the essence of the

pattern succinctly.
• Intent. A short statement that answers the following questions: What does the

design pattern do? What is its rationale and intent? What particular design issue or
problem does it address?

• Also Known As. Other well-known names for the pattern, if any.
• Motivation. A scenario that illustrates a design problem and how the class and

object structures in the pattern solve the problem.
• Applicability

– What are the situations in which the design pattern can be applied? What are
examples of poor designs that the pattern can address? How can you recognize
these situations?

• Structure. A graphical representation of the pattern using a notation based on
UML.

• Participants. The classes and/or objects participating in the design pattern and
their responsibilities.

Design Pattern Complete Description (II)

• Collaborations. How the participants collaborate to carry out their responsibilities.
• Consequences. How does the pattern support its objectives? What are the trade-

offs and results of using the pattern? What aspect of system structure does it let
you vary independently?

• Implementation. What pitfalls, hints, or techniques should you be aware of when
implementing the pattern? Are there language-specific issues?

• Sample Code. Code fragments that illustrate how you might implement the pattern
in Java.

• Known Uses. Examples of the pattern found in real systems.
• Related Patterns. The patterns are inter-related. What design patterns are closely

related to this one? What are the important differences? With which other
patterns should this one be used?

Luca Dan Serbanati - Software Design Techniques

8

Luca Dan Serbanati - Software Design Techniques

9

1.1. Patterns of General Principles in
Assigning Responsibilities

1. Expert

2. Creator

3. Low Coupling

4. High Cohesion

5. Controller

E
X

C
R

L
C

H
C

C
L

10

Information Expert
What is a basic principle by which to assign responsibilities to objects?
Assign a responsibility to the information expert - the class that has the information
necessary to fulfill the responsibility.

POS:

Who should be responsible for knowing the grand total of a sale?
By Information Expert, we should look for that class of objects that has the
information needed to determine the total.

:POS

1:getTotal()

Sale
date
time

<<business>>

SalesLineItem
quantity

0..*

1..1

0..*

1..1

Product
Specificationdescription
price
UPC*

Described by

*

{ordered}

11

Object Creator
Problem:
Who should be responsible for creating a new instance of some class?
Solution:
Assign class B the responsibility to create an instance of class A if one or more of
the following is true:

• B aggregates A objects.
• B contains A objects.
• B records instances of A objects.
• B closely uses A objects.
• B has the initializing data that will be passed to A when it is created (thus B is an

Expert with respect to creating A).
B is a creator of A objects.
If more than one option applies, prefer a class B which aggregates or contains class A.

12

Low Coupling
Couplig in OO: is a measure of how strongly one element is connected to, has
knowledge of, or relies on other elements. An element with low (or weak) coupling
is not dependent on too many other elements; "too many" is context dependent,
but we examine it anyway. These elements include classes, subsystems, systems,
and so on.

Low Coupling is a principle to keep in mind during all design decisions; it is an
underlying goal to continually consider. It is an evaluative principle that you apply
while evaluating all design decisions.

Common forms of coupling from TypeX to TypeY include the following:
• TypeX has an attribute (data member or instance variable) that refers to a TypeY

instance, or TypeY itself.
• A TypeX object calls on services of a TypeY object.
• TypeX has a method that references an instance of TypeY, or TypeY itself, by any

means. These typically include a parameter or local variable of type TypeY, or the
object returned from a message being an instance of TypeY.

• TypeX is a direct or indirect subclass of TypeY.
• TypeY is an interface, and TypeX implements that interface.
Only the classes with low coupling could be easely reused.

High Cohesion
Cohesion (or more specifically, functional cohesion) is a measure of how strongly
related and focused the responsibilities of an element are. An element with highly
related responsibilities that does not do a tremendous amount of work has high
cohesion. These elements include classes, subsystems, and so on.

Problem: How to keep objects focused, understandable, and manageable, and as a
side effect, support Low Coupling?

Solution: Assign a responsibility so that cohesion remains high. Use this to evaluate
alternatives.

A class with low cohesion does many unrelated things or does too much work. Such
classes are undesirable; they suffer from the following problems:

• hard to comprehend
• hard to reuse
• hard to maintain
• delicate; constantly affected by change
Low cohesion classes often represent a very "large grain" of abstraction or have taken

on responsibilities that should have been delegated to other objects.

13

Controller (I)
Problem: What first object beyond the UI layer receives and coordinates ("controls") a

system operation?
Solution: Assign the responsibility to a class representing one of the following choices:
• Represents the overall "system," a "root object," a device that the software is

running within, or a major subsystem (these are all variations of a facade
controller).

• Represents a use case scenario within which the system event occurs, often named
<UseCaseName>Handler, <UseCaseName>Coordinator, or <UseCaseName>Session
(use case or session controller).
– Use the same controller class for all system events in the same use case

scenario.
– Informally, a session is an instance of a conversation with an actor. Sessions can

be of any length but are often organized in terms of use cases (use case
sessions).

Corollary: Note that "window," "view," and "document“ should not fulfill the tasks
associated with system events; they typically receive these events and delegate
them to a controller.

14

15

Controller (II)
POS:

Problem: What first object beyond the UI layer receives and coordinates
("controls") a system operation?

Solution:

?????
1: enterItem(upc, quantity)

System

endSale()
enterItem())
makeNewSale()

System operations

facade controller

facade controller

role controller

use case controller

Shop

Cashier

SaleItemManager

POS

System

endSale()
enterItem()
makePayment()

POS

endsale()
enterItem
makePayment()

makePayment()

1: enterItem(upc, quantity)

1: enterItem(upc, quantity)

1: enterItem(upc, quantity)

1: enterItem(upc, quantity)

Luca Dan Serbanati - Software Design Techniques

16

1.2. Fundamental Design Patterns

1. Delegation

2. Interface

3. Marker Interface

4. Proxy

D
E

I
N

M
I

P
R

Class Reuse: Inheritance
• Code reuse = the most important objective for software development.
• Class reuse = The use of existing classes for creation of new classes, without

modification of the existing classes. Two solutions:
– Inheritance
– Composition

Class Inheritance lets you define the implementation of one class in terms of
another‘s: with inheritance, the internals of parent classes are often visible to
subclasses.

Class inheritance is defined statically at compile-time it is straightforward to use, but
has some disadvantages:
– You can't change the implementations inherited from parent classes at run-

time, because inheritance is defined at compile-time.
– Parent classes often define at least part of their subclasses' physical

representation. Because inheritance exposes a subclass it “breaks
encapsulation“ (the superclass and the subclass are tightly coupled and it is
difficult to reuse a subclass).

Luca Dan Serbanati - Software Design Techniques

17

Luca Dan Serbanati - Software Design Techniques

18

Class reuse: Composition
The new functionality is obtained by assembling or composing objects to get more

complex functionality.
Object composition requires that the objects being composed have well-defined

interfaces. It is defined dynamically at run-time through objects acquiring
references to other objects.
– Because objects are accessed solely through their interfaces encapsulation is

not broken: any object can be replaced at run-time by another as long as it has
the same type.

– Favoring object composition over class inheritance helps you keep each class
encapsulated and focused on one task. Your classes and class hierarchies will
remain small.

Composition has some disadvantages:
– a design based on object composition will have more objects (if fewer classes),
– the system's behavior will depend on their interrelationships instead of being

defined in one class.

Luca Dan Serbanati - Software Design Techniques

19

When the inheritance should be used?
Principle: Favor object composition over class inheritance.
Use the inheritance :
1. When the relationship between the two classes is “x is a type of y” and never

when is “x is a role played by y”.
2. When during the program execution you do not need to change the belonging of

an object to a class.
3. When you need to model types of roles, transactions or devices in the problem

domain and never for behaviors.
Do not use the inheritance:
1. For overriding or canceling the members of the superclass.
2. For a utility class (i.e. for a functionality to be used in many ways or in many

places in the program).

Luca Dan Serbanati - Software Design Techniques

20

Delegation
Intent: Delegation extends and reuses the functionality of a class in an other class
with more functionality than the first one. In delegation, two objects are involved
in handling a request: a receiving object, delegator, delegates operations to its
delegate. This is analogous to subclasses deferring requests to parent classes. But
with inheritance, an inherited operation can always refer to the receiving object
through the this member variable. To achieve the same effect with delegation, the
receiver passes itself to the delegate to let the delegated operation refer to the
receiver.
Motivation: is a way of making composition as powerful for reuse as inheritance.
Applicability: when we need to extend an existing class, but we can not use the
inheritance because:
– an object belonging to a subclass should become an object of another subclass

of the same superclass
– when a class should hide a member inherited from its superclass.

Solution: Let introduce an other class (Delegator) which uses an instance of the
uses an instance of the class to be used (Delegate).

Delegator Delegate

1..11..1

uses +usee+user

1..11..1

Luca Dan Serbanati - Software Design Techniques

21

Inheritance vs. Delegation
Inheritance

1. Inheritance can not be modified during execution.
2. Often inheritance enters in conflict with incapsulation because allows to a
subclass to access the superclass details. Each change in the superclass
involves changes of its subclasses. Subclass reuse becomes difficult. In this
case is better to inherit from an abstract class.

Composition (Aggregation) + delegation
1. Avoid inheritance disadvantages.
2. Allows to build behaviors at runtime.
3. Is less structured than inheritance. It is a technique for describing the
relationship between two classes.

Set
body : Lista

insert(Elem)
extract()

List

add(Elem)()
remove(Elem)()
first()
last()()

1..1

0..1

1..1

Window
width : integer

Rectangle

Area()
1..1

0..1

1..1
height : integer

Area()

Window

width : integer

Rectangle

Area()

height : integer

Area()

Inheritance Delegation

Luca Dan Serbanati - Software Design Techniques

22

Delegation: Implementation
Example:
Java event model is based on delegation: the event sources do not decide
themselves what to do when an event occurs, but delegate the event processing to
listeners.

Related Patterns: any model which uses delegation. Particularly, Proxy and
Decorator.

:Order :Order
Item

1: stockVerify() 2: stockVerify()

class Order {
. . . .
private Vector orderItems = new Vector();
. . . .
void stockVerify() throws StockException {
. . . .

orderItems.elementAt(i).stockVerify();
. . . .
}
public class StockException extends Exception {

public StockException(String msg) {
super(msg);

}
}

class OrderItem {
. . . .
private Product product;
private Quantity quantity;
. . . .
synchronized void stockVerify()

throws StockException {
. . . .

if (product.getStock() - quantity <
Stock.minStock(product))

throw new StockException
(“Under the minimum stock”);

. . . .
}

Luca Dan Serbanati - Software Design Techniques

23

Interface (I)
Intent: Instances of a class provide data and services to instances of other classes. You

want to keep client classes independent of specific data-and-service-providing
classes so you can substitute another data-and-service-providing class with
minimal impact on client classes. You accomplish this by having other classes
access the data and services through an interface.

Motivation: An application that manages the purchase of goods for a business. Among
the entities your program work with are vendors, freight companies, receiving
locations, and billing locations. One common aspect of these entities is that they all
have street addresses which appear in different parts of the user graphical
interface.
You want to have a class for displaying and editing street addresses so that you can
reuse it wherever there is a street address in the user interface. We call this class
AddressPanel. AddressPanel objects should get and set address information in a
separate data object that may represent a vendor, a freight company, and so on.

Has an AddressPanel to be coupled with all these objects?

Interface (II)
You can solve the problem by creating an address interface. Instances of the
AddressPanel class would then simply require the data objects that they work with
to implement the address interface. They would call the accessor methods of the
interface to get and set the object’s address information.

Luca Dan Serbanati - Software Design Techniques

24

DataClassAddressPanel

AddressIF

<<Interface>>

getAddress()

setAddress()

getTown()

setTown ()

getZip()

setZip()

1..11..1 1..11..1

uses

Luca Dan Serbanati - Software Design Techniques

25

Interface (III)
Applicability:
1. An object relies on another object for data or services. If the object must assume

that the other object upon which it relies belongs to a particular class, the
reusability of the object’s class would be compromised.

2. You want to vary the kind of object used by other objects for a particular purpose
without making the object dependent on any class other than its own.

3. A class’s constructors cannot be accessed through an interface, because Java’s
interfaces cannot have constructors.

Solution:
To avoid classes having to depend on other classes because of a uses/used-by
relationship, make the usage indirect through an interface.
Client uses classes that implement the IndirectionIF interface.
IndirectionIF provides indirection that keeps the Client class independent of the
class that is playing the Service role. Interfaces in this role are generally public.
Service. Classes in this role provide a service to classes in the Client role. Classes in
this role are ideally private to their package.

ServiceClient IndirectionIF
<<Interface>>

1..11..1

uses

1..11..1

Luca Dan Serbanati - Software Design Techniques

26

Interface (IV)
Consequences:
1. Applying the Interface pattern keeps a class that needs a service from another

class from being coupled to any specific class.
2. Like any other indirection, the Interface pattern can make a program more difficult

to understand.
Implementation:

Implementation of the Interface pattern is straightforward:
1. define an interface to provide a service,
2. write client classes to access the service through the interface, and
3. write service-providing classes that implement the interface.

Java interfaces cannot have constructors. For this reason, interfaces are not helpful
in keeping a class responsible for creating objects independent of the class of
objects that it creates.

Luca Dan Serbanati -
Software Design Techniques

27

Interface (IV)
import java.awt.*;
import java.awt.event.*;
class AddressPanel extends Panel {

private addressIF data;
TextField addressField = new TextField("", 35);
TextField townField = new TextField("", 16);
TextField ZIPField = new TextField("", 10);
public AddressPanel() {

.......
}
public void setData(AddressIF address) {

data = address;
addressField.setText(address.getAddress());
townField.setText(address.getTown());
ZIPField.setText(address.getZIP());

}
public void save() {

if (data != null) {
data.setAddress(addressField.getText());
data.setTown(townField.getText());
data.setZIP(ZIPField.getText());

}
}

}
public interface AddressIF {

public String getAddress();
public void setAddress(String address1);
public String getTown();
public void setTown(String town);
public String getZIP() ;
public void setZIP(String ZIP);

}

class Address implements AddressIF{
private String address;
private String town;
private String ZIP;

//...
public String getAddress(){return address; }
public void setAddress(String address) {

this.address = address; }
public String getTown() { return town; }
public void setTown(String town) {

this.town = town; }
public String getZIP() { return ZIP; }
public void setZIP(String ZIP) {

this.ZIP = ZIP;
}

}

import java.awt.*;
public class AddressTest extends Frame {

public static void main(String[] argv) {
new TestAddress().show();

}
AddressTest () {

super("Test the AddressPanel");
add(new
AddressPanel(),BorderLayout.CENTER);
pack();
setWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent evt)

{}
});

}
}

I
N

Interface

Luca Dan Serbanati - Software Design Techniques

28

Marker Interface (I)
Intent:

The Marker Interface pattern uses the fact that a class implements an interface to
indicate semantic Boolean attributes of the class. It works particularly well with
utility classes that must determine something about objects without assuming that
they are an instance of any particular class.

Motivation:
Java’s Object class defines a method called equals. The argument to equals can be
a reference to any object. All Java classes inherit the equals method from the
Object class. The implementation of equals provided by the Object class is
equivalent to the == operator. However, classes that want their instances to be
considered equal if they contain the same values override the equals method
appropriately.
Container objects, such as java.util.ArrayList, call an object’s equals method
when performing a search of their contents to find an object that is equal to a
given object. Such searches might call an object’s equals method for each object in
the container objects. This is wasteful in those cases where the object being
searched for belongs to a class that does not override the equals method, because
it is faster to use the == operator to determine whether two objects are the same
object. If the container class were able to determine that the object being searched
for belongs to a class that does not override the equals method, then it could use
the == operator instead of calling equals.
The solution is to introduce an interface without member methods called
EqualsByIdentity which is implemented by classes which do not override
equals(), thus it is possible to use ==. The interface provides a marking of the
classes.

Luca Dan Serbanati - Software Design Techniques

29

Marker Interface (II)
Applicability:
1. Utility classes may need to know something about the intended use of an object’s

class that is either true or false without relying on objects being an instance of a
particular class.

2. Classes can implement any number of interfaces.
3. It is possible to determine whether an object’s class implements a known interface

without relying on the object being an instance of any particular class.
4. Some attributes about the intended use of a class may change during the class’s

lifetime.
Solution:

For instances of a utility class to determine whether another class’s instances are
included in a classification without the utility class having knowledge of other
classes, the utility class can determine whether other classes implement a marker
interface. A marker interface is an interface that does not declare any methods or
variables.

Marked

Unmarked

Utility
Op1(:Object)()

MarkerIF
<<Interface>>recognizes

:Utility

:Utility

1: op1(:UnMarked)

1: op1(:Marked)

Luca Dan Serbanati - Software Design Techniques

30

Marker Interface (III)
Consequences:

Instances of utility classes are able to make inferences about objects passed to
their methods without depending on the objects to be instances of any particular
class. The relationship between the utility class and the marker interface is
transparent to all other classes except those that implement the interface.

Implementation:
The formal parameter that corresponds to the object is typically declared as
Object. It is also possible to use an interface that declares methods in the Marker
Interface pattern. In such cases, the interface used as a marker interface usually
extends a pure marker interface.
Declaring that a class implements a marker interface implies that the class is
included in the classification implied by the interface. It also implies that all
subclasses of that class are included in the classification.

Java exemple:
The Serializable interface is a Marker Interface. Instances of the
ObjectOutputStream write as a stream of bytes only objects that implements
Serializable. The conversion of an object to a stream of bytes is called serialization.
An instance of the ObjectInputStream class can read the stream of bytes and turn it
back into an object.

Luca Dan Serbanati - Software Design Techniques

31

Marker Interface (IV)
import java.util.Enumeration;
import java.util.NoSuchElementException;
public class LinkedList implements Cloneable, java.io.Serializable {

private Object head;
private LinkedList tail;
private boolean traversed = false;
public LinkedList() { this(null, null); }
public LinkedList(Object head) { this(head, null); }
public LinkedList(Object head, LinkedList tail) { this.head = head; this.tail = tail; }
public Object getHead() { return head; }
public LinkedList getTail() { return tail; }
synchronized public int size() {

if (tail == null) return 1;
try {

traversed = true;
if (tail.traversed) return 1;
return 1 + tail.size();

} finally { traversed = false; }
}
public Enumeration elements() { return new ListEnumeration(); }
private class ListEnumeration implements Enumeration {

private LinkedList thisNode = LinkedList.this;
public boolean hasMoreElements() { return thisNode != null;}
public Object nextElement() {

if (thisNode == null) throw new NoSuchElementException();
Object next = thisNode.head;
thisNode = thisNode.tail;
return next;

}
}
public LinkedList find(Object target) {

if (target == null || target instanceof EqualByIdentity) return findEq(target);
else return findEquals(target);

}
private synchronized LinkedList findEq(Object target) {

if (head == target) return this;
if (tail == null) return null;
try {

traversed = true;
if (tail.traversed) return null;
return tail.findEq(target);

} finally { traversed = false; }
}
private synchronized LinkedList findEquals(Object target) {

if (head.equals(target)) return this;
if (tail == null) return null;
try {

traversed = true;
if (tail.traversed) return null;
return tail.findEquals(target);

} finally { traversed = false; }
}

}
public interface EqualByIdentity { }

The LinkedList class implements a linked-list data
structure. The purpose of the methods find,
findEq, and findEquals is to find a LinkedList node
that refers to a specified object. The find method is
the only one of the three that is public. The findEq
method performs the necessary equality tests by
using the == operator and the findEquals method
performs the necessary equality tests by using the
equals method of the object being searched for.
The find method decides whether to call the findEq
method or the findEquals method by determining
whether the object to search for implements the
marker interface EqualByIdentity.

head

tail

traver
sed

. . . .

LinkedList LinkedList LinkedListLinkedList

head

tail

traver
sed

head

tail

traver
sed

head

tail

traver
sed

Luca Dan Serbanati - Software Design Techniques

32

Proxy (I)
Intent:

Provide a surrogate or placeholder for another object to control access to it. Proxy
is a very general pattern that occurs in many other patterns but never by itself in its
pure form. The Proxy pattern forces method calls to an object to occur indirectly
through a proxy object that acts as a surrogate for the other object, delegating
method calls to that object. Classes for proxy objects are declared in a way that
usually eliminates the client object’s awareness that it is dealing with a proxy.

Motivation:
The proxy object’s methods do not directly provide the service that its clients
expect; instead, they call the methods of the object that provides the actual
service. Although a proxy object’s methods do not directly provide the service its
clients expect, the proxy object provides some management of those services.
Proxy objects share a common interface with the service-providing object. Whether
client objects directly access a service-providing object or a proxy object, they
access it through the common interface rather than an instance of a particular
class. Doing so allows client objects to be unaware that they call the methods of a
proxy object rather than the methods of the actual service-providing object.
Transparent management of another object’s services is the basic reason for using
a proxy object.

Proxy versions
• Remote Proxy – Represents an object locally which belongs to a different address

space. Think of an ATM implementation, it will hold proxy objects for bank
information that exists in the remote server. RMI is an example of proxy
implmenetation for this type in java.

• Virtual Proxy – In place of a complex or heavy object use a skeleton representation.
It creates the illusion that a service object exists before it actually does. Doing so
can be useful if a service object is expensive to create and its services may not be
needed. When an underlying image is huge in size, just represent it using a virtual
proxy object and on demand load the real object. You feel that the real object is
expensive in terms of instantiation and so without the real need we are not going
to use the real object. Until the need arises we will use the virtual proxy.

• Protection Proxy – controls access to a service-providing object based on a security
policy. Working on a MNC we are well aware of the proxy server that provides us
internet, in fact it censures internet: it provides us only work related web pages. If
we search for something critical in Google and click the result we get this page is
blocked by proxy server. You never know why this page is blocked and you feel this
is genuine.

• Smart Reference – is a substitute of a simple pointer for accessing an object. It adds
new operations as: counts accesses, loads a persistent object in memory when it is
referred for the first time or verifies if a real object is blocked when is accessed for
the first time.

Luca Dan Serbanati - Software Design Techniques

33

Luca Dan Serbanati - Software Design Techniques

34

Proxy Applicability
The Proxy pattern may be used when:

 It is not possible for a service-providing object to provide a service at a
convenient time or place.

 Gaining visibility to an object is complex and you want to hide that complexity.
 Access to a service-providing object must be controlled without adding

complexity to the service-providing object or coupling the service to the access
control policy.

 The management of a service should be provided in a way that is transparent
to the clients of that service.

 The clients of a service-providing object do not care about the identity of the
object’s class or which instance of its class they are working with.

Luca Dan Serbanati - Software Design Techniques

35

Proxy - SolutionSolution
ServiceProxy

– keeps a reference to Service.
– Provides an interface identical to that of the object and thus can replace AbstractService Service.
– Controls access to Service and may be responsible for its creation and destruction.

remote: encodes a request and its arguments and sends it to Service,
virtual: can store in a cache information about Service and therefore should not be accessed the

same object every time a request is received,
protection: check if the caller has the right to make a request.

AbstractService sau ServiceIF defines a common interface for ServiceProxy and Service. As a
consequence ServiceProxy may be used anywhere Service is valid.
Service defines the real object that is represented by ServiceProxy.

Colaborations:
ServiceProxy sends a request to Service when needed, according to the type of proxy.

Conclusions:
– Introduces a level of indirection when it is accessed an object that can be useful in various cases.

Implementation
To be implemented, the model requires only creating a class that share an interface or a superclass of
the class that provides the service and delegates operations to the class instance that provides the
service.

Service
doIt()

ServiceProxy
doIt()

AbstractService
doIt()

ServiceIF
<<Interface>>

doIt()

ServiceProxy
doIt()

Service
doIt()

Luca Dan Serbanati - Software Design Techniques

36

1.3. Creational Patterns

1. Factory Method (class)

2. Abstract Factory

3. Builder

4. Prototype

5. Singleton

6. Object Pool

A
F

F
M

B
U

P
R

S
I

O
P

• These patterns are often used in place of
direct instantiation with constructors
(object creation without new!).

• They make the creation process more
adaptable and dynamic.

• In particular, they can provide a great deal
of flexibility to specify what objects are to
be created, how those objects are
created, and how they are initialized.

Creational Patterns
• Creational patterns involve the construction of new objects. However, they rarely

use constructors directly. Rather, a creational pattern often hides the constructors
in the classes being created, and provides alternate methods to return instances of
the desired class.

• The most common reason for using a creational pattern is that you need to vary
the class that's instantiated in order to fit the concrete situation. Clearly, a
constructor in a single class is an inadequate method to return instances of possibly
different classes. Almost always the objects returned are instances of some
common super-class.

• Class creational patterns use inheritance to vary the object being created. Object
creational patterns generally delegate the actual construction to a different object
that is responsible for deciding which class is required and invoking the necessary
constructor.

Example
public URLConnection openConnection() throws IOException

• URLConnection is an abstract class. Concrete subclasses represent connections to
many different kinds of servers including HTTP, FTP, SMTP, NNTP, and more. Each of
these concrete subclasses has to speak a different protocol and behave a little
differently.

Luca Dan Serbanati - Software Design Techniques

37

Luca Dan Serbanati - Software Design Techniques

38

Abstract Factory (I)
Known also as Kit or Toolkit.
Intent
1. Provide an interface for creating families of related or dependent objects
without specifying their concrete classes, or
2. Given a set of related interfaces, provide a way to create objects that implement
those interfaces from a matched set of concrete classes.

Motivation
Build a user-interface framework that works on top of multiple windowing systems,
such as Windows, Motif, or MacOS with the platform’s native look and feel. You
organize it by creating an abstract class for each type of widget (text field,
pushbutton, list box, etc.) and then writing a concrete subclass of each of those
classes for each supported platform.

Abstract Factory (II)
To make this structure robust, you need to ensure that all the widget objects created

are for the desired platform.

Luca Dan Serbanati - Software Design Techniques

39

PMWidgetFactory
CreateScrollBar()
CreateWindow()

PMWindow

MotifWidgetFactory
CreateScrollBar()
CreateWindow()

MotifWindow

PMScrollBar MotifScrollBar

Window

ScrollBar

Client
WidgetFactory

CreateScrollBar()
CreateWindow()

Abstract
Factory

AbstractFa
ctory

ConcreteF
actory

ConcreteF
actory

ConcreteP
roduct

ConcreteP
roduct

ConcreteP
roduct

ConcreteP
roduct

AbstractPr
oduct

AbstractPr
oduct

Clie
nt

An abstract factory
class defines methods
to create an instance
of each abstract class
that represents a user-
interface widget.

Luca Dan Serbanati - Software Design Techniques

40

Abstract Factory (III)
Participants
AbstractFactory (WidgetFactory) declares an interface for operations that create

abstract product objects.
ConcreteFactory (MotifWidgetFactory, PMWidgetFactory) implements the operations

to create concrete product objects.
AbstractProduct (Window, ScrollBar) declares an interface for a type of product object.
ConcreteProduct (MotifWindow, MotifScrollBar)
• defines a product object to be created by the corresponding concrete factory.
• implements the AbstractProduct interface.
Client uses only interfaces declared by AbstractFactory and AbstractProduct classes.
In a more general context, an abstract factory class and its concrete subclasses

organize sets of concrete classes that work with different but related products. For
a broader perspective, consider another situation.

Abstract Factory (IV)
• The factory determines

the actual concrete type
of object to be created,
and it is here that the
object is actually created .
However, the factory only
returns a reference to the
created concrete object.

• This insulates client code
from object creation by
having clients ask a
factory object to create
an object of the desired
abstract type and to
return a reference to the
object.

Luca Dan Serbanati - Software Design Techniques

41

The abstract factory pattern provides a way to
encapsulate a group of individual factories that have
a common theme without specifying their concrete
classes.

Abstract Factory (V)
Luca Dan Serbanati - Software Design Techniques

42

ConcreteFactoryA

createP1() : P1A
createP2() : P2A

ConcreteFactoryB

createP1() : P1B
createP2() : P2B

P1A P1B

P2A P2B

AbstractFactory
<<static final>> iP1 : Integer
<<static final>> iP2 : Integer
<<static final>> concreteFactoryA : ConcreteFactoryA = new ConcreteFactoryA()
<<static final>> concreteFactoryB : ConcreteFactoryB = new ConcretFactoryB()

<<static>> getFactory(tipo : Integer) : AbstractFactory
createP1() : P1
createP2() : P2

P1

P2

Client

A broader perspective:

Abstract Factory (VI)

A simple example:

Applicability
Use the Abstract Factory pattern when:
• a system should be independent of how its products are created, composed, and

represented;
• a system should be configured with one of multiple families of products;
• a family of related product objects is designed to be used together, and you need to

enforce this constraint;
• you want to provide a class library of products, and you want to reveal just their

interfaces, not their implementations.

Luca Dan Serbanati - Software Design Techniques

43

Abstract Factory (VII)
Implementation
Useful techniques for implementing the Abstract Factory pattern:

Factories as singletons. An application typically needs only one instance of a
ConcreteFactory per product family.
Creating the products. AbstractFactory only declares an interface for creating
products. It's up to ConcreteProduct subclasses to actually create them. The
most common way to do this is to define a factory method for each product. A
concrete factory will specify its products by overriding the factory method for each.
While this implementation is simple, it requires a new concrete factory subclass for
each product family, even if the product families differ only slightly.
Defining extensible factories. AbstractFactory usually defines a different
operation for each kind of product it can produce. The kinds of products are
encoded in the operation signatures. Adding a new kind of product requires
changing the AbstractFactory interface and all the classes that depend on it.

Luca Dan Serbanati - Software Design Techniques

44

Luca Dan Serbanati - Software Design Techniques

45

Factory Method (I)Intent:
Define an interface for creating an object, but let subclasses decide which class to

instantiate. Factory Method lets a class defer instantiation to subclasses.
Motivation:
Consider the problem of writing a framework for desktop applications. Such

applications are typically organized around documents or files. Their operation
usually begins with a command to create or edit a word processing document,
spreadsheet, time line, or other type of document the application is intended to
work with.

Factory Method

Product

ConcreteProduct

Concrete Creator

Creation Requestor

Factory IF

ConcreteDocument
newDocument()
openDocument()

Application
newDocument()
openDocument()

DocumentFactoryIF
createDocument(type : String) : Document

<<Interface>>

DocumentConcreteFactory
createDocument(type : String) : Document

Document
getTitle()
newDocument()
openDocument()

*

1..1

+creator*

+requestor1..1
Request-creation

1..1* 1..1*

Edits

*

1..1

*

1..1

Creates

Creation Requestor

Document doc=
createDocument(type) ;

return new
ConcreteDocument() ;

Framework

Luca Dan Serbanati - Software Design Techniques

46

Factory Method (cont.d)
A framework to support this type of application will include high-level support for

common operations such as creating, opening, or saving documents. Such support
will generally include a consistent set of methods to call when the user issues a
command. For the purpose of this discussion, we will call the class providing the
methods of the Application class.

Because the logic to implement most of these commands varies with the type of
document, the Application class usually delegates most commands to some sort of
document object. The logic in document objects for implementing these
commands varies with the type of document. However, some operations, such as
displaying the title of a document, will be common to all document objects. This
suggests an organization that includes:
• An application-independent document interface
• An abstract class that provides application-independency.

One way to accomplish this is for the programmer using the framework to provide a
class that encapsulates logic for selecting and instantiating application-specific
classes. For the Application class to be able to call the programmer-provided class
without having any dependencies on it, the framework should provide an interface
that the programmer-provided class must implement. Such an interface would
declare a method that the programmer-provided class would implement to select
and instantiate a class. The Application class works through the framework-
provided interface and not with the programmer-provided class.

Factory Method (II)
• In particular, you should think of the Factory Method when any of the following

conditions hold:
– You do not know at compile time which specific subclasses need to be

instantiated.
– You want to defer the choice of which objects to create to a subclass.
– A class delegates its work to a helper class, and you want to remove explicit

information about which class the work is delegated to.

Luca Dan Serbanati - Software Design Techniques

47

Parameterized Factory Method.
This uses a single, generally concrete,
Creator class with a single Factory Method
to create instances of different subclasses.
The subclass instantiated is chosen based on
the arguments passed to the Factory Method.

Use of an abstract Creator class
It creates instances of an abstract Product
class. Concrete subclasses of the Creator
class create particular concrete instances of
the Product class.

Luca Dan Serbanati - Software Design Techniques

48

Factory Method (III)
public interface FactoryIF {

public Product createProduct (String key)
throws NoProductException;

} // interface FactoryIF

public class Factory implements FactoryIF {
public Product createProduct(String key)

throws NoProductException {
if (“KEY1”.equals(key))

return new ConcreteProduct1();
if (“KEY2”.equals(key))

return new ConcreteProduct2();
throw new NoProductException(key);

} // createProduct (String)
} // class Factory
. . . .
public class CreationRequestor {

private static Product product;
private String key;
public CreationRequestor(String key, FactoryIF factory) throws NoProductException {

this.key = key;
product = factory.createProduct(key);

} // Constructor(String, FactoryIF)
public void productProcess() {
. . . product.op1();
. . . product.op2();

}
. . . .
abstract public class Product {

private String key;
abstract Type1 op1() ;
abstract Type1 op1() ;

} // class Product

ConcreteProduct1
op1(): Type1
op2(): Type2

CreationRequestor
productProcess()

FactoryIF
<<Interface>>

createProduct(String key) : Product

*

1..1
Request-creation

+creator

+requestor

*

1..1

Factory
createProduct(String key) : Product

Product
op1(): Type1
op2(): Type2 1..1* 1..1*

uses

*

1..1

creates

*

1..1

ConcreteProduct2
op1(): Type1
op2(): Type2

Solution:
Provide application-independent objects with an
application-specific object to which they delegate the
creation of other application-specific objects. Require the
application-independent objects that initiate the creation
of application-specific objects to assume that the objects
implement a common interface.

Luca Dan Serbanati - Software Design Techniques

49

Factory Method (IV)
Structure:
ProductIF. The objects created using this pattern must implement an interface in this

role.
ConcreteProduct1, ConcreteProduct2, and so on. Classes in this role are instantiated

by a Factory object. Classes in this role must implement the ProductIF interface.
CreationRequester. A class in this role is an application-independent class that needs

to create application-specific classes. It does so indirectly through an instance of a
class that implements the FactoryIF interface.

FactoryIF. This is an application-independent interface. Objects that create ProductIF
objects on behalf of CreationRequester objects must implement this interface.
Interfaces of this sort declare a method that can be called by a CreationRequester
object to create concrete product objects.
Interfaces filling this role will typically have a name that includes the word Factory,
such as DocumentFactoryIF or ImageFactoryIF.

Factory. This is an application-specific class that implements the appropriate FactoryIF
interface and has a method to create ConcreteProduct objects. Classes filling this
role will typically have a name, such as DocumentFactory or ImageFactory, that
contains the word Factory.

Luca Dan Serbanati - Software Design Techniques

50

Factory Method (V)
Consequences:

The CreationRequester class is independent of the class of ConcreteProduct
objects actually created.
The set of Product classes that can be instantiated may be changed dynamically.

The indirection between the initiation of object creation and the determination of
which class to instantiate can make it more difficult for maintenance programmers
to understand.

Exemple
Consider an application which manages messages belonging to several types.
The messages need an accurate analysis for identification the message semantics.
This analysis is due to an interpreter which is created when the analysis is needed
and then deleted when the semantics is obtained. The interpreters are in a
hierarchy similar to that of messages. The abstract class Message supplies a
method called createsInterpreter (a Factory Method) which allows an object
MessageManager to create appropriate interpreters for several messages. The
subclasses of the class Message redefine this method in order to deliver the
interpreter corresponding to the message type.

Luca Dan Serbanati - Software Design Techniques

51

Factory Method (VI)
• Because the subclasses are each other relatives, the example uses an abstract class

rather an interface.

• Another example where the pattern uses an interface:

Allarm

createInterpreter(type: String):Interpreter

Command

createInterpreter(type: String): Interpreter

AlarmInterpreter

analyzes () : Object

CommandInterpreter

analyzes() : Object

Message

createInterpreter(type :String):Interpreter

MessageManager
Interpreter

analyzes() : Object

creates

Factory

Method

creates

Luca Dan Serbanati - Software Design Techniques

52

Builder (I)
Intent: Separate the construction of a complex object from its representation so that

the same construction process can create different representations. The pattern
allows a client object to construct a complex object by specifying only its type and
content. The client is shielded from the details of the object’s construction.

Motivation: Consider the problem of writing an email gateway program. The program
receives e-mail messages that are in MIME format (Multipurpose Internet Mail
Extensions). It forwards them in a different format for different kinds of e-mail
systems. This situation is a good fit for the Builder pattern. It is straightforward to
organize this program with an object that parses MIME messages. Each message to
parse is paired with a builder object that the parser uses to build a message in the
required format. As the parser recognizes each header field and message body
part, it calls the corresponding method of the builder object it is working with. the
MessageManager class is responsible for collecting MIME formatted e-mail
messages and initiating their transmission. The e-mail messages it directly manages
are instances of the MIMEMsg class.

Builder (II)

Luca Dan Serbanati - Software Design Techniques

53

Structure

Luca Dan Serbanati - Software Design Techniques

54

Builder (III)
In order to benefit from polymorphism, MessageBuilder is an abstract builder class. It

defines methods that correspond to the various header fields and body types that
MIME supports. It declares abstract methods that correspond to required header
fields and the most common body types. It declares these methods abstract
because all concrete subclasses of MessageBuilder should define these methods.
Implementation of the methods is in MessageBuilder’s subclasses which are
specialized for different e-mail systems (exp.: MAPI si PROFS).
The MessageBuilder class also defines a class method called getInstance. From the
message’s destination address, the getInstance method determines the message
format needed for the new message. It returns an instance of the subclass of
Message-Builder appropriate for the format of the new message to the
MIMEParser object.

The builder classes create product objects that implement the OutboundMsgIF
interface. This interface defines a method called send that is intended to send the
e-mail message wherever it is supposed to go.

Luca Dan Serbanati - Software Design Techniques

55

Builder - Example

1.1.1: builder:=getInstance(String)

: Message
Manager

outMsg : Outbound
MessageIF

builder :
MAPIBuilder

: MIMEParser

: Message
Builder

Application

1.2: send()

1.1: outMsg:=parse(MIMEMsg)

1.1.2: to(String)
1.1.3: from(String)
1.1.4: plainText(String)
1.1.5: jpegImage(Image)
1.1.6: outMsg:=getOutboundMsg()

1: receive(msg:MIMEMsg)

A MessageManager object receives an e-
mail message.
1.1The MessageManager object calls the
MIMEParser class’s parse method. It will
return an OutboundMessageIF object that
encapsulates the new message in the
needed format.

1.2The MessageManager object calls the
OutboundMsg object’s send method. This
sends the message off and completes the
message processing.

MAPIBuilder

MAPIMsg

1

1
PROFSBuilder

PROFSMsg

1

1

Creates

1

1Creates

1

1

MIMEMsg

MIMEParser
parse(msg : MIMEMsg)

0..*

1

0..*+parsee

1+parser

Is-parsed-by

MessageBuilder
getInstance(to : String) : MessageBuilder
to(: String)
from(: String)
organization(: String)
plainText(: String)
jpegImage(: Image)
getOutboundMsg()

0..*

1

Directs

0..*

1

MessageManager

1 0..*1 0..*

Manages

OutboundMessageIF
<<Interface>>

0..*

1

Sends

+sendee

+sender

0..*

1

Director

Product

ConcreteBuilder

Builder

Luca Dan Serbanati - Software Design Techniques

56

Builder (IV)
Structure
Builder : specifies an abstract interface for creating parts of a Product object.
ConcreteBuilder :
• constructs and assembles parts of the product by implementing the Builder

interface.
• defines and keeps track of the representation it creates.
• provides an interface for retrieving the product.
Director
• constructs an object using the Builder interface.
Product
• represents the complex object under construction. ConcreteBuilder builds the

product's internal representation and defines the process by which it's assembled.
• includes classes that define the constituent parts, including interfaces for

assembling the parts into the final result.
Applicability

– the algorithm for creating a complex object should be independent of the parts
that make up the object and how they're assembled.

– the construction process must allow different representations for the object
that's constructed.

Luca Dan Serbanati - Software Design Techniques

57

Builder (IV)
The intent of the Builder design pattern is to separate the construction of a complex

object from its representation. By doing so the same construction process can
create different representations.

Colaborations
– the algorithm for creating a complex object should be independent of the parts

that make up the object and how they're assembled.
– the construction process must allow different representations for the object

that's constructed.
Consequences

It lets you vary a product's internal representation. .
It isolates code for construction and representation
It gives you finer control over the construction process.

Luca Dan Serbanati - Software Design Techniques

58

Builder (V)
aClient aDirector :

Director

aConcreteBuilder
: ConcreteBuilder

new ConcreteBuilder()

new Director(aConcreteBuilder)

Construct()
BuildPartA()

BuildPartB()

BuildPartC()

GetResult()

Builder

BuildPart()

ConcreteBuilder

BuildPart()

GetResult()

Product

for all objects in structure {

builder.BuildPart();

}

Director

Construct()

+builder

Builder

Director

ConcreteBuilder
Builder

Product

Luca Dan Serbanati - Software Design Techniques

59

Builder (VI)Implementation:
1. However, methods that provide optional content or supplementary information about the
structure of the content may be unnecessary or even inappropriate for some data
representations. Providing a default do-nothing implementation for such methods saves
effort in the implementation of concrete builder classes that do not need such methods.
2.Organizing concrete builder classes so that calls to content-providing methods simply add
data to the product object is often good enough. In some cases, there will be no simple way
to tell the builder where in the finished product a particular piece of the product will go. In
those situations, it may be simplest to have the content-providing method return an object
to the director that encapsulates such a piece of the product. The director object can then
pass the object to another content-providing method in a way that implies the position of
the piece of the product within the whole product.

Related Patterns
Interface. Builder uses the Interface pattern for hidding the ProductIF objects.
Composite. The object built with Builder is a Composite object.
Factory Method. Builder uses the Factory Method pattern to decide what Builder class will
be instantiated.
Layered Initialization. The Builder pattern uses the Layered Initialization pattern for creation
of ConcreteBuilder objects.
Marker Interface. ProductIF interface uses thr Marker Interface pattern.
Visitor. The Visitor pattern allows the client object to be more closely coupled to the
construction of the new complex object than the Builder pattern allows. Instead of
describing the content of the objects to be built through a series of method calls, the
information is presented in bulk as a complex data structure.

Luca Dan Serbanati - Software Design Techniques

60

Prototype (I)
Intent:Specify the kinds of objects to create using a prototypical instance, and create new

objects by copying this prototype. Allows an object to create customized objects without
knowing their exact class or the details of how to create them

Motivation: A Computer-Assisted Design (CAD) program that allows its users to draw diagrams
from a palette of symbols. The program will have a core set of built-in symbols. However,
people with different and specialized interests will use the program and will want additional
symbols that are specific to their interests. It must be possible to provide additional sets of
symbols that users can add to the program to suit their needs.

A solution is to provide the drawing program with previously created objects to use as
prototypes for creating similar objects.

The most important requirement for objects prototypes is that they have a method, typically
called clone, that returns a new object that is a copy of the original object.

Cloneable
<<Interface>>

SymbolDrawing
Program 1..1 1..*1..1 1..*

Uses

Symbol Builder

*

1..1

*

1..1

Create-and-register symbols

+creator

+registrar

P
R

Prototype

The drawing program maintains a
collection of prototypical Symbol objects.
It uses the Symbol objects by cloning
them. SymbolBuilder objects create
Symbol objects and register them with
the drawing program.

Luca Dan Serbanati -
Software Design Techniques

61

Prototype (II) P
R

Prototype

PrototypeIF
<<Interface>>

Prototype
Client

registerPrototype()
.... 1..1 1..*1..1 1..*

Uses

PrototypeBuilder

*

1..1

Create-and-register-prototype-objects
+creator

+registrar

*

1..1

Prototype

Prototype

Client

PrototypeBuilder

Structure
• Client. The client class represents the rest of the program for the purposes of the Prototype pattern.

The client class needs to create objects that it knows little about. Client classes will have a method
(registerPrototype or registerSymbol) that can be called to add a prototypical object to a client object’s
collection.

• Prototype. Classes in this role implement the PrototypeIF interface and are instantiated for the purpose
of being cloned by the client. They can be also commonly abstract classes with a number of concrete
subclasses.

• PrototypeIF. All prototype objects must implement the interface. The client class interacts with
prototype objects through this interface. Interfaces in this role should extend the Cloneable interface so
that all objects that implement the interface can be cloned

• PrototypeBuilder. This corresponds to any class instantiated to supply prototypical objects to the client
object. Such classes should have a name that denotes the type of prototypical object that they build,
such as SymbolBuilder.

Luca Dan Serbanati -
Software Design Techniques

62

Prototype (III) P
R

Prototype

Implementation
A. An implementation issue is how the PrototypeBuilder objects add objects to a
client object’s palette of prototypical objects:

1. The simplest strategy is for the client class to provide a method for this
purpose, which PrototypeBuilder objects can call. A possible drawback is that
the PrototypeBuilder objects will need to know the class of the client object.

2. The PrototypeBuilder objects can be shielded from knowing the exact class of
the client objects by providing an interface or abstract class for the client class
to implement or inherit.

B. Another issue is to implement the clone operation for the prototypical objects.
Two basic strategies for clone operation:

1. Shallow copying: the variables of the cloned object contain the same values as
the variables of the original object and all object references are to the same
objects.

2. Deep copying: the variables of the cloned object contain the same values as the
variables of the original object, except that variables that refer to objects refer
to copies of the objects referred to by the original object.

Luca Dan Serbanati - Software Design Techniques

63

Prototype (IV)
Consequences

1. Adding and removing products at run-time. Prototypes let you incorporate a new
concrete product class into a system simply by registering a prototypical instance
with the client. A program can dynamically add and remove prototypical objects at
runtime. This is a distinct advantage offered by none of the other creational
patterns.
2. Specifying new objects by varying values. A PrototypeBuilder object may provide
the additional flexibility of allowing new prototypical objects to be created by
object composition and changes to the values of object attributes.
3. The client object may also be able to create new kinds of prototypical objects. In
the drawing program example we looked at previously, the client object could very
reasonably allow the user to identify a sub-drawing and then turn the sub-drawing
into a new symbol.
4. Configuring an application with classes dynamically. Some run-time
environments let you load classes into an application dynamically.
5. The client class is independent of the exact class of the prototypical objects that
it uses. Also, the client class does not need to know the details of how to build the
prototypical objects.
6. Reduced subclassing. There is no need to organize prototypical objects into any
sort of class hierarchy.

P
R

Prototype

Luca Dan Serbanati - Software Design Techniques

64

Prototype - Example P
R

Prototype

Cloneable
<<Interface>>

CharacterIF
getImage()
setImage()

CharacterManager
getRandomCharacter()
addCharater() 1..1 1..*1..1 1..*

Uses

CharacterLoader

*

1..1

Create-and-register-objects
+creator

+registrar

*

1..1

Hero
getBravey()
setBravey ()

Monster
getViciousness()
setViciousness ()

Character
getImage()
setImage()

• Suppose an interactive role-playing game to
write. The game allows the user to interact
with simulated characters. One of the
expectations for the game is that people
who play want to interact with new
characters. An add-on to the game that
consists of a few pre-generated characters
and a program to generate additional
characters are needed.

• The characters in the game are instances of
a relatively small number of classes such as
Hero, Fool, Villain, and Monster. What
makes instances of the same class different
from each other is the different attribute
values that are set for them, such as the
images that are used to represent them,
height, weight, intelligence, and dexterity.

Luca Dan Serbanati -
Software Design Techniques

65

Prototype – Coding Example
import java.awt.Image;
public interface CharacterIF extends Cloneable {

public String getName() ;
public void setName(String name) ;
public Image getImage() ;
public void setImage(Image image) ;
public int getStrength() ;
public void setStrength(int strength) ;

... }
public abstract class Character implements CharacterIF {

public Object clone() {
try {

return super.clone();
} catch (CloneNotSupportedException e) {

throw new InternalError();
}

}
public String getName() { return name; }
public void setName(String name) { this.name=name; }
public Image getImage() { return image; }
public void setImage(Image image) {

this.image = image; }
... }

public class Hero extends Character {
private int bravery;

...
public int getBravery() { return bravery; }
public void setBravery(int bravery) {

this.bravery = bravery;
}

}

public class CharacterManager {
private Vector characters = new Vector();

...
Character getRandomCharacter() {

int i = (int)(characters.size()*Math.random());
Character c = (Character)characters.elementAt(i);
return (Character)c.clone();

}
void addCharacter(Character character) {

characters.addElement(character);
}

}

class CharacterLoader {
private CharacterManager mgr;
CharacterLoader(CharacterManager cm) {

mgr = cm;
}
int loadCharacters(String fname) {

int objectCount = 0;
try {

InputStream in;
in = new FileInputStream(fname);
in = new BufferedInputStream(in);
ObjectInputStream oIn = new ObjectInputStream(in);
while(true) {

Object c = oIn.readObject();
if (c instanceof Character) {

mgr.addCharacter((Character)c);
}

}
} catch (Exception e) { }
return objectCount;

}
}

P
R

Prototype

Luca Dan Serbanati - Software Design Techniques

66

Singleton (I)
Intent: Ensure a class only has one instance, and provide a global point of access to it.

Objects that use an instance of that class use the same instance
Motivation. Some classes which involve the central management of a resource should

have exactly one instance. The resource may be external, such as an object that
manages the reuse of database connections, or internal, such as an object that
keeps an error count and other statistics for a compiler.
Suppose you need to write a class that could be used to ensure that no more than
one audio clip is played at a time.
To avoid the undesirable situation of two audio clips playing at the same time, the
class you write should stop the previous audio clip before starting the next audio
clip. A way to design a class to implement this policy while keeping the class simple
is to ensure that there is only one instance of the class shared by all objects that use
that class. If all requests to play audio clips go through the same object, then it is
simple for the object to stop the last audio clip it started before starting the next
audio clip.

AudioClipManager

instance : AudioClipManager
precClip : AudioClip

<<constructor>> AudioClipManager()
getInstance() : AudioClipManager

play(AudioClip)
stop()

A solution is to make the class itself
responsible for keeping track of its sole
instance. The class can ensure that no other
instance can be created and it can provide a
way to access the instance. This is the
Singleton pattern.

Singleton (II)

Applicability
Use the Singleton pattern when:
• there must be exactly one instance of a class, and it must be accessible to clients

from a well-known access point.
• when the sole instance should be extensible by subclassing, and clients should be

able to use an extended instance without modifying their code.
Participants
• Singleton

– defines an getInstance operation that lets clients access its unique instance.
getInstance is a class (static) operation .

– may be responsible for creating its own unique instance.

Luca Dan Serbanati - Software Design Techniques

67

Singleton
singletonInstance : Singleton

<<constructor>> Singleton():Singleton
getInstance() : Singleton
.

Singleton

Singleton

Solution
A singleton class has a static variable that refers to the
one instance of the class you want to use. This
instance is created when the class is loaded into
memory. You should implement the class in a way that
prevents other classes from creating additional
instances. That means ensuring that all of the class’s
constructors are private.

S
I

Singleton

Singleton (III)
Consequences
The Singleton pattern has several benefits:
1. Controlled access to sole instance. Because the Singleton class encapsulates its

sole instance, it can have strict control over how and when clients access it.
2. Reduced name space. The Singleton avoids polluting the name space with global

variables that store sole instances.
3. Permits refinement of operations and representation. The Singleton class may be

subclassed, and it's easy to configure an application with an instance of this
extended class.

4. Permits a variable number of instances. The pattern makes it easy to change your
mind and allow more than one instance of the class. Only the operation that
grants access to the Singleton instance needs to change.

5. More flexible than class operations. Another way to package a singleton's
functionality is to use static operations. But it is hard to change a design to allow
more than one instance of a class. Moreover, static member functions are never
virtual, so subclasses can't override them polymorphically.

Luca Dan Serbanati - Software Design Techniques

68

S
I

Singleton

Luca Dan Serbanati -
Software Design Techniques

69

Singleton (IV) S
I

Singleton

public class AudioClipManager implements AudioClip{
private static AudioClipManager instance = new AudioClipManager();
private AudioClip prevClip;
private AudioClipManager() { }
public static AudioClipManager getInstance() {

return instance;
}
public void play(AudioClip clip) {

if (prevClip != null)
prevClip.stop();
prevClip = clip;
clip.play();

}

public void loop(AudioClip clip) {
if (prevClip != null)
prevClip.stop();
prevClip = clip;
clip.loop();

}
public void stop() {

if (prevClip != null)
prevClip.stop();

}

Luca Dan Serbanati - Software Design Techniques

70

Object Pool (I)
Intent: Manage the reuse of objects when a type of object is expensive to create or

only a limited number of a kind of object can be created.
Motivation

Writing of a class library to provide access to a proprietary database. Clients will
send queries to the database through a network connection. The database server
will receive queries through the network connection and return the results through
the same connection. To query the database, the program must have a connection
to the database. A convenient way for programmers who will use the library to
manage connections is for each part of a program that needs a connection to
create its own connection. However, creating database connections that are not
needed is bad for a few reasons:
– It can take a few seconds to create each database connection.
– The more connections there are to a database, the longer it takes to create

new connections.
– Each database connection uses a network connection. Some platforms limit the

number of network connections that they allow.

Object Pool (II)
Solution
• The library will manage database connections based on the premise that a

program’s database connections are interchangeable. So long as a database
connection is in a state that allows it to convey a query to the database, it does not
matter which of a program’s database connections is used. Using this observation,
the database access library will be designed to have a two-layer implementation of
database connections.

• A class called Connection will implement the upper layer. Programs that use the
database access library will directly create and use Connection objects. Connection
objects will identify a database, but will not directly encapsulate a database
connection. They will be paired with a ConnectionImpl objects. ConnectionImpl
objects encapsulate an actual database connection.

Luca Dan Serbanati - Software Design Techniques

71
Connection Impl

Connection
databasename : String

0..1

1..1

0..1

1..1

Uses
PoolConnessioni

<<constructor>> Connection Pool() : Connection Pool
getInstance() : PoolConnessioni
acquireImpl(databasename : String) : Connection Impl
releaseImpl(c : Connection Impl)

1..1

0..*

1..1

0..*

1..1

0..* Manage- ConnectionImpl-Objects
+manager

+client

1..1

0..*
The library will create and
manage
ConnectionImpl
objects by maintaining a
pool of them that are not
currently paired up with a
Connection object.

Luca Dan Serbanati - Software Design Techniques

72

Object Pool (III)
Structure:
• Reusable. Instances of classes in this role

collaborate with other objects for a limited
amount of time, then they are no longer needed
for that collaboration.

• Client. Instances of classes in this role use
Reusable objects.

• ReusablePool. Instances of classes in this role
manage Reusable objects for use by Client
objects. It is usually desirable to keep all
Reusable objects that are not currently in use in
the same object pool so that they can be
managed by one coherent policy. To achieve
this, the ReusablePool class is designed to be a
singleton class. Its constructor(s) are private,
which forces other classes to call its getInstance
method to get the one instance of the
ReusablePool class.

• In many applications of the Object Pool pattern,
there are reasons for limiting the total number
of Reusable objects that may exist.

O
P

Object Pool

Client

Reusable
0..1

1..1

0..1

1..1

Uses

ReusablePool

<<constructor>> ReusablePool() : ReusablePool
getInstance(): ReusablePool
acquireReusable() : Reusable
ReleaseReusable(r : Reusable) : return
setMaxPoolSize(maxSize : int)

1..10..* +manager
1..1

+client

0..*

Manage-Reusable-Objects

1..1

0..*

1..1

0..*

Object Pool

Client Object PoolReusable

Object Pool (IV)
Applicability:
1. A program may not create more than a limited number of instances of a particular

class.
2. Creating instances of a particular class is sufficiently expensive that creating new

instances of that class should be avoided.
3. A program can avoid creating some objects by reusing objects that it has finished

with rather than letting them be garbage-collected.
4. The instances of a class are interchangeable. If you have multiple instances on

hand, you can arbitrarily choose one to use for a purpose. It does not matter which
one you choose.

5. Resources can be managed centrally by a single object or in a decentralized way by
multiple objects. It is easier to achieve predictable results by managing resources
centrally with a single object.

6. Some objects consume resources that are in short supply. Some objects may
consume a lot of memory. Some objects may periodically check to see whether
some condition is true, thereby consuming CPU cycles and perhaps network
bandwidth. If the resources that an object consumes are in short supply, then it
may be important that the object stop using the resource when the object is not
being used.

Luca Dan Serbanati - Software Design Techniques

73

Luca Dan Serbanati -
Software Design Techniques

74

Object Pool (V)
import java.util.Hashtable;
import java.util.Vector;
/** Istanze di questa classe forniscono le vere connessioni. */
class ConnessioneImpl {

// Il nome del DB.
private String nomeDatabase;
// Costruttore privato
private ConnessioneImpl(String nomeDatabase) {

this.nomeDatabase = nomeDatabase;
//...

} // constructor()
//...
/** restituisce il nome del DB a cui questo oggetto è connesso. */
String getDatabaseName() {

return nomeDatabase;
} // getDatabaseName()
/** Invia una richiesta al DB e restituisce il risultato. */
Object inviaRichiesta(Richiesta richiesta) {

Object risultato = null;
//...
return risultato;

} // inviaRichiesta(Richiesta)
//…

/* Questa classe interna accede al costruttore ConnessioneImpl */
static class PoolConnessioni {

// L’unica istanza di questa classe
private static PoolConnessioni ilPool = new PoolConnessioni();
/* Questa hash table associa i nomi dei DB con i Vector che
contengono i pool di connessioni per quel DB. */

private Hashtable poolDictionary = new Hashtable();
// Costruttore è privato per impedire ad altre classe di creare istanze.

private PoolConnessioni() {}
/* Restituisce l’unica istanza della classe */

public static PoolConnessioni getInstance() {
return ilPool;

} // getInstance()

/* Restituisce una connessione dal pool appropriato o crea una
nuova se il pool è vuoto.

@param nomeDatabase Il nome del DB a cui viene fornito
ConnessioneImpl. */

public synchronized ConnessioneImpl esegueImpl
(String nomeDatabase) {

Vector pool=(Vector)poolDictionary.get(nomeDatabase);
if (pool != null) {

int size = pool.size();
if (size > 0)

return (ConnessioneImpl)pool.remove(size-1);
} // if null
/* Nessuna ConnessioneImpl nel pool, viene creata

una nuova. */
return new ConnessioneImpl(nomeDatabase);

} // esegueImpl(String)
/** Aggiunge un ConnessioneImpl al pool appropriato. */
public synchronized void rilasciaImpl(ConnessioneImpl impl) {

String nomeDatabase= impl.getDatabaseName();
Vector pool=(Vector)poolDictionary.get(nomeDatabase);

if (pool == null) {
pool = new Vector();
poolDictionary.put(nomeDatabase, pool);

} // if null
pool.addElement(impl);

} // rilasciaImpl(ConnessioneImpl)
} // class PoolConnessioni

} // class ConnessioneImpl

Luca Dan Serbanati - Software Design Techniques

75

Object Pool (VI)
/**

Oggetti che trasmettono richieste al DB implementano questa interfaccia
*/
interface Richiesta {

//...
} // interface Richiesta

/**
Classe pubblica utilizzata al esterno dalla libreria di accesso al DB per rappresentare la connessione con il DB.
*/

public class Connessione {
private final static ConnessioneImpl.PoolConnessioni connessionePool = ConnessioneImpl.PoolConnessioni.getInstance();
private String nomeDatabase;

//...

/**
Invia una richiesta al database e restituisce il risultato.

*/
Object inviaRichiesta(Richiesta request) {

Object risultato;
ConnessioneImpl impl = connessionePool.esegueImpl(nomeDatabase);
risultato = impl.inviaRichiesta(request);
connessionePool.rilasciaImpl(impl);
return risultato;

} // inviaRichiesta(Richiesta)
} // class Connessione

Object Pool (VII)
public class SoftObjectPool implements ObjectPoolIF {

private ArrayList pool ;
private CreationIF creator ;
private int instanceCount;
private int maxInstances ;
private Class poolClass;
public SoftObjectPool(Class poolClass, CreationIF creator) {

this(poolClass, creator, Integer.MAX_VALUE);
}

public SoftObjectPool(Class poolClass, CreationIF creator) {
this.creator = creator;
this.poolClass = poolClass;
pool = new ArrayList();

}
public int getSize() {

synchronized (pool) {
return pool.size();

}
public int getInstanceCount() {

return instanceCount;
}
public int getMaxInstances() {

return maxInstances;
}
public void setMaxInstances(int newValue) {

maxInstances = newValue;
}
public Object getObject() {

synchronized (pool) {
Object thisObject = removeObject();
if (thisObject!=null) {

return thisObject;
}
if (getInstanceCount() < getMaxInstances()){

return createObject();
} else {

return null;
}

}
}

public Object waitForObject() throws InterruptedException {
synchronized (pool) {

Object thisObject = removeObject();
if (thisObject!=null) {

return thisObject;
}
if (getInstanceCount() < getMaxInstances()){

return createObject();
} else {

do {
pool.wait();
thisObject = removeObject();

} while (thisObject==null);
return thisObject;

} // if
}

}
private Object removeObject() {

while (pool.size()>0) {
SoftReference thisRef = (SoftReference)pool.remove(pool.size()-1);

Object thisObject = thisRef.get();
if (thisObject!=null) {

return thisObject;
}
instanceCount—;

}
return null;

}
private Object createObject() {

Object newObject = creator.create();
instanceCount ++;
return newObject;

}
public void release(Object obj) {

if (obj == null) {
throw new NullPointerException();

}
if (!poolClass.isInstance(obj)) {

String actualClassName = obj.getClass().getName();
throw new ArrayStoreException(actualClassName);

}
synchronized (pool) {

pool.add(obj);
pool.notify();

}
}

} // SoftObjectPool

Luca Dan Serbanati - Software Design Techniques

76

Using Soft References
• The Object Pool pattern keeps objects that are not being used available for reuse. If

the program that is using an object pool is running out of memory, then you would
like the garbage collector to be able to remove objects from the pool and reclaim
the memory that they occupy. You can arrange for the garbage collector to do this
by using soft references.

• Soft references are implemented in the Java API by the class
java.lang.ref.SoftReference. A reference to another object is passed to the
constructor of a SoftReference object. Immediately after a Soft-Reference object is
constructed, its get method returns the object reference that was passed to its
constructor. The interesting thing about SoftReference objects is that they are
special to the garbage collector. If the only live reference to an object is through a
SoftReference object, then the garbage collector will set the reference in the
SoftReference object to null so that it can safely reclaim the storage occupied by
the referenced object.

• If the object pool refers to objects in the pool through soft references, then the
garbage collector will reclaim the storage occupied by the objects if there are no
other references to the objects and the Java virtual machine (JVM) is running low
on memory.

Luca Dan Serbanati - Software Design Techniques

77

Luca Dan Serbanati - Software Design Techniques

78

Summary - Creational Patterns
Pattern Name When it is used Varying parts
Abstract Factory Provides an interface for creating families Families of objects

of objects (products) related to each other
and (product) dependent on each other.

Factory Method Defines an interface for creating an object, The subclass of the object
but let subclasses decide which class to to be instatiated
instantiate. Instantiation is resubmitted
to subclasses

Builder Separates the construction of a complex object How is created the
from its representation so that the same compound object
construction process can create different
representations.

Prototype Specifies the types of objects that can be created The class of the object
using an instance of the prototype, and create to be instatiated
objects by copying this prototype.

Singleton Ensures that a class has a single instance and The unique instance of the
and provide a global point of access to this class
instance

Object Pool Manage the reuse of objects when this type Number of objects
wastes too many of its reusable objects or
limits the number of objects to be created

Luca Dan Serbanati - Software Design Techniques

79

1.4. Structural Patterns

1. Filter

2. Composite

3. Adapter (class and object)

4. Iterator

5. Bridge

6. Façade

7. Decorator

8. Virtual Proxy

• These Patterns use composition to merge
objects and classes into larger structures.

• They show you how to glue different pieces
of a system together in a flexible and
extensible fashion.

• Structural patterns help you guarantee that
when one of the parts changes, the entire
structure does not need to change.

• They also show you how to recast pieces that
do not fit (but that you need to use) into
pieces that do fit.

Structural Patterns
• Structural patterns show you how to glue different pieces of a system together in a

flexible and extensible fashion. Structural patterns help you guarantee that when
one of the parts changes, the entire structure doesn't need to change. They also
show you how to recast pieces that don't fit (but that you need to use) into pieces
that do fit. They all involve connections between objects.

• A structural design pattern serves as a blueprint for how different classes and
objects are combined to form larger structures.

• Structural class patterns use inheritance to combine the interfaces or
implementations of multiple classes.

• Structural class patterns are relatively rare. Structural object patterns use object
composition to combine the implementations of multiple objects. They can
combine the interfaces of all the composed objects into one unified interface or
they can provide a completely new interface.

Luca Dan Serbanati - Software Design Techniques

80

Luca Dan Serbanati - Software Design Techniques

81

Filter (I)
Intent:
• Objects that have compatible interfaces, but perform different transformations

and computations on data streams, can be dynamically connected to perform
arbitrary operations.

• The Filter pattern allows objects that have compatible interfaces and perform
different transformations and computations on streams of data to be dynamically
connected to perform arbitrary operations on streams of data.

Motivation:
Unix: The uniq program normally copies all the lines it reads to its output.
However, when it finds consecutive lines that contain identical characters, it copies
only the first such line to its output.
wc does a simple analysis of a data stream. It produces a count of the number of
characters, words, and lines that were in the data stream.
Classes that perform simple transformations and analyses on data streams tend to
be very generic in nature. When writing such classes, you cannot anticipate all the
ways they will be used. Some applications will want to apply transformations and
analyses to only selected parts of a data stream. These classes should be written in
a way that allows great flexibility in how their instances can be connected.
One way to accomplish this flexibility is to define a common interface for all of
these classes so an instance of one can use an instance of another without having
to take into account which class the object is an instance of.

F
R

Filter

Luca Dan Serbanati - Software Design Techniques

82

Filter (II)Applicability
1. Classes that implement common data transformations and analyses can be

used in a great variety of programs.
2. You can dynamically combine data analysis and transformation objects by

connecting them together.
3. The use of transformation/analysis objects should be transparent to other

objects.
Solution

Base a solution on common interfaces and delegation. The Filter pattern organizes
the classes that participate in it as data sources, data sinks, and data filters. The
data filter classes perform the transformation and analysis operations.

There are two basic forms of the Filter pattern.

Luca Dan Serbanati - Software Design Techniques

83

Source Filter (I)

Intent:
Data sink objects get data by calling methods in data sources. This form of Filter is
sometimes called a pull filter.

Structure Source filter
SourceIF. An interface in this role declares one or more methods that return data
when it is called (getData).
Source. A class in this role is responsible primarily for providing data rather than
transforming or analyzing data. Classes in this role are also required to implement
the SourceIF interface.

F
R

Filter

AbstractSourceFilter

<<constructor>> create(as : SourceIF) : AbstractSourceFilter
getData()

Source
getData()

AbstractSink

ConcreteSourceFilter
<<constructor>> create(as : SourceIF) : AbstractSourceFilter
getData()

1..1

1..1

1..1

1..1

Gets-data-from

SourceIF

getData()1..1

1..1

Gets-data-from

1..1

1..1

- source: SourceIF()

Luca Dan Serbanati - Software Design Techniques

84

Source Filter (II)
Structure Source filter

AbstractSourceFilter. A class in this role is an abstract superclass of classes that
transform and analyze data. It has a constructor that takes an argument that is a
SourceIF object. Instances of this class delegate the fetching of data to the SourceIF
object that was passed to their constructor.
AbstractSourceFilter classes typically have an instance variable that is set by their
constructor and refers to the SourceIF object passed to their constructor. However,
to ensure that their subclasses do not depend on this instance variable, the
instance variable should be private.
AbstractSourceFilter classes typically define a getData method that simply calls the
getData method of the SourceIF object referred to by the instance variable.
ConcreteSourceFilter. Classes in this role are a concrete subclass of an
AbstractSourceFilter class. They override the getData method that they inherit to
perform the appropriate transformation or analysis operations.
Sink. Instances of classes in this role call the getData method of a SourceIF object.
Unlike ConcreteSourceFilter objects, instances of Sink classes use data without
passing it on to another AbstractSourceFilter object.

Luca Dan Serbanati - Software Design Techniques

85

Sink Filter (I) F
R

Filter

Intent
Data source objects pass data to methods of data sink objects. This form of Filter is
sometimes called a push filter.

Structure Sink Filter
SinkIF. An interface in this role declares one or more methods that take data
through one of its parameters (putData).
Sink. A class in this role is responsible primarily for receiving and processing data
rather than transforming or analyzing data. Classes in this role are also required to
implement the SinkIF interface. Data is passed to Sink objects by passing the data
to the Sink object’s putData method.

Sink
putData()

AbstractSinkFilter

<<constructor>> create(as : SinkIF) : AbstractSinkFilter
putData()

SinkIF
putData()

Source

ConcreteSinkFilter
<<constructor>> create(as : SinkIF) : AbstractSinkFilter
putData()

1..1

1..1
1..1

1..1

Sends-data-to

1..1

1..1

Sends-data-to
1..1

1..1

- sink: SinkIF()

Luca Dan Serbanati - Software Design Techniques

86

Sink Filter (II)
Structure Sink filter (cont’d)

AbstractSinkFilter. A class in this role is an abstract superclass of classes that
transform and analyze data. It has a constructor that takes an argument that is a
SinkIF object. Instances of this class pass data to the SinkIF object that was passed
to their constructor. Because subclasses of this class inherit the fact that it
implements the SinkIF interface, their instances can accept data from other objects
that pass data to SinkIF objects.
AbstractSinkFilter classes typically have an instance variable that is set by their
constructor and refers to the SinkIF object passed to their constructor. However, to
ensure that their subclasses do not depend on this instance variable, the instance
variable should be private. AbstractSinkFilter classes typically define a putData
method that simply calls the putData method of the SinkIF object referred to by the
instance variable.
ConcreteSinkFilter. Classes in this role are a concrete subclass of an
AbstractPushFilter class. They override the putData method that they inherit to
perform the appropriate transformation or analysis operations.
Source. Instances of classes in this role call the putData method of a SinkIF object.

Luca Dan Serbanati - Software Design Techniques

87

Filter (III)
Consequences
1. The portion of a program that follows the Filter pattern can be structured as a set

of sources, sinks, and filters.
2. Filter objects that do not maintain internal state can be dynamically replaced while

a program is running. This property of stateless filters allows dynamic change of
behavior and adaptation to different requirements at runtime.

3. It is quite reasonable for a program to incorporate both forms of the Filter pattern.
However, it is unusual for the same class to participate in both forms.

4. If your design calls for filters to be dynamically added to or removed while
processing a data stream, then you will need to design a mechanism to manage
this change in a predictable way.

Implementation
Making filter classes independent of the programs that they are used in increases
their reusability. In some cases it is needed that a filter object should use context-
specific information. You could define one or more interfaces that declare methods
for providing context-specific information to a filter object. If a program detects
that a filter object implements one of those interfaces, it can use the interface to
provide additional information to the filter.

F
R

Filter

Luca Dan Serbanati - Software Design Techniques

88

Filter (IV)
Java Exemple

The java.io package includes the FilterReader class, which participates in the Filter
pattern as an abstract source filter class. The corresponding abstract source class is
Reader. Concrete subclasses of the FilterReader class include BufferedReader,
FileReader, and LineNumberReader. There is no separate interface that fills the
SourceIF role. The Reader class also fills the SourceIF role.
The java.io package includes the FilterWriter class, which participates in the Filter
pattern as an abstract sink filter class. The corresponding abstract sink class is
Writer. Concrete subclasses of the FilterWriter class include BufferedWriter,
FileWriter, and PrintWriter. The Writer class also fills the SinkIF role.
A program that reads lines of text as commands and needs to track line numbers
for producing error messages:

LineNumberReader in;
void init(String fName) {
FileReader fin;
try {
fin = new FileReader(fName);
in =new LineNumberReader(new BufferedReader(fin));

} catch (FileNotFoundException e) {
System.out.println("Unable to open "+fName);
... }
...

Luca Dan Serbanati - Software Design Techniques

89

Filter - Code
import java.io.IOException;
public abstract class InStream {

public abstract int read(byte[] array) throws IOException;
// getData()

} // class InStream

import java.io.IOException;
import java.io.RandomAccessFile;
public class FileInStream extends InStream {

private RandomAccessFile file;
public FileInStream(String fName) throws IOException {

file = new RandomAccessFile(fName, "r");
} // Constructor(String)

public int read(byte[] array) throws IOException { // getData()
return file.read(array);

} // read(byte[])
} // class FileInStream

import java.io.IOException;
public class FilterInStream extends InStream {

private InStream inStream;

public FilterInStream(InStream inStream) throws IOException {
this.inStream = inStream;

} // Constructor(InStream)

public int read(byte[] array) throws IOException { // getData()
return inStream.read(array);

} // read(byte[])
} // class FilterInStream

import java.io.IOException;
public class ByteCountInStream extends FilterInStream {

private long byteCount = 0;
public ByteCountInStream(InStream inStream) throws IOException {

super(inStream);
} // Constructor(InStream)
public int read(byte[] array) throws IOException { //getData()

int count;
count = super.read(array);
if (count >0)

byteCount += count;
return count;

} // read(byte[])
public long getByteCount() {

return byteCount;
} // getByteCount()

} // class ByteCountInStream

import java.io.IOException;
public class TranslateInStream extends FilterInStream {

private byte[] translationTable;
private final static int TRANS_TBL_LENGTH = 256;

public TranslateInStream(InStream inStream,byte[] table) throws
IOException {super(inStream);

// Creates the transaltion table by copying translation data
translationTable = new byte[TRANS_TBL_LENGTH];
System.arraycopy(table, 0, translationTable, 0,

Math.min(TRANS_TBL_LENGTH, table.length));
for (int i = table.length; i < TRANS_TBL_LENGTH; i++) {

translationTable[i] = (byte)i;
} // for

} // Constructor(InStream)
public int read(byte[] array) throws IOException { // getData()

int count;
count = super.read(array);
for (int i = 0; i < count; i++) {

array[i] = translationTable[array[i]];
} // for
return count;

} // read(byte[])
} // class ByteCountInStream

Luca Dan Serbanati - Software Design Techniques

90

Composite
Intent

Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects
uniformly. It is also known as the Recursive Composition pattern. It is a partitioning
pattern because during the design it is often used to recursively decompose a
complex object into simpler objects.

Motivation
Suppose that we are writing a document formatting program. It formats characters
into lines of text organized into columns that are organized into pages. However, a
document may contain other elements. Columns and pages can contain frames
that can contain columns. Columns, frames, and lines of text can contain images
etc. as in the following class diagram that shows these relationships.

Document

Page

Character

LineOfText

Column

Image

Frame

As we can see, there is a fair amount
of complexity here. Page and Frame
objects must know how to handle and
combine two kinds of elements.
Column objects must know how to
handle and combine three kinds of
elements.

Luca Dan Serbanati - Software Design Techniques

91

Composite - Motivation
• The Composite pattern removes that

complexity by allowing these objects to
know how to handle only one kind of
element. It accomplishes this by insisting
that all document element classes
implement a common interface.

• By applying the Composite pattern, we
have introduced a common interface for
all document elements and a common
superclass for all container classes.

• Doing this the number of aggregation
relationships is reduced to one.
Management of the aggregation is now
the responsibility of the
CompositeDocumentElement class. The
concrete container classes (Document,
Page, Column, etc.) only need to
understand how to combine one kind of
element.

Character Image

DocumentPage Column Frame LineOfText

DocumentElement

CompositeDocumentElement

**

Luca Dan Serbanati - Software Design Techniques

92

Composite - Applicability
Applicabilitaty
1. You have a complex object you want to decompose into a part-whole hierarchy of

objects.
2. You want to minimize the complexity of the part-whole hierarchy by minimizing

the number of different kinds of child objects that objects in the tree need to be
aware of.

3. There is no requirement to distinguish between most of the part-whole
relationships.

Structure

C
E

Composite

Leaf
operation()

Composite

operation()
add(c : Component)
remove(c : Component)
getChild(i : int)

Client

Component

add(c : Component)
operation()

remove(c : Component)
getChild(i : int)

*

+children

*

for all g in children
g.operation()

Composite

Component

Leaf

CompositeClient

Luca Dan Serbanati - Software Design Techniques

93

Composite - Structure
Structure
Component
• declares the interface for objects in the composition.
• implements default behavior for the interface common to all classes, as

appropriate.
• declares an interface for accessing and managing its child components.
• (optional) defines an interface for accessing a component's parent in the

recursive structure, and implements it if that's appropriate.
Leaf
• represents leaf objects in the composition. A leaf has no children.
• defines behavior for primitive objects in the composition.
Composite
• defines behavior for components having children.
• stores child components.
• implements child-related operations in the Component interface.
Client
• manipulates objects in the composition through the Component interface.

Luca Dan Serbanati - Software Design Techniques

94

Composite -
A more
general
model

• Instances of these classes can be
assembled in a tree-like manner.

ConcreteComponent1
operation()

AbstractComposite
operation()
add(c : Component)
remove(c : Component)
getChild(i : int)

Client ComponentIF
operation() **

ConcreteComponent2
operation()

ConcreteComposite1
operation()
add(a : AbstractComponent)
remove(a : AbstractComponent)
getChild(i : int)

ConcreteComposite2
operation()

add(a : AbstractComponent)
remove(a : AbstractComponent)
getChild(i : int)

<<interface>>

Luca Dan Serbanati - Software Design Techniques

95

Composite - A more general model
Structure
• ComponentIF. An interface in the ComponentIF role is implemented by all the

objects in the hierarchy of objects that make up a composite object. Composite
objects normally treat the objects that they contain as instances of classes that
implement the ComponentIF interface rather than as instances of their actual class.

• Component1, Component2, and so on. Instances of these classes are used as
leaves in the tree organization.

• AbstractComposite. A class in this role is the abstract superclass of all composite
objects that participate in the Composite pattern. AbstractComposite defines and
provides default implementations of methods for managing a composite object’s
components. The add method adds a component to a composite object. The
remove method removes a component from a composite object. The getChild
method returns a reference to a component object of a composite object.

• ConcreteComposite1, ConcreteComposite2, and so on. Instances of these are
composite objects that use other instances of AbstractComposite.

Conclusions
• You can access a tree-structured composite object and the objects that constitute it

through the ComponentIF interface, whether they are simple objects or composite.

C
E

Composite

Luca Dan Serbanati - Software Design Techniques

96

Composite - Conclusions
• Client objects of an AbstractComponent can simply treat it as an

AbstractComponent, without having to be aware of any subclasses of
AbstractComponent.

• If a client invokes a method of a ComponentIF object that is supposed to perform
an operation and the ComponentIF object is an AbstractComposite object, then it
may delegate the operation to the ComponentIF objects that constitute it.
Similarly, if a client object calls a method of a ComponentIF object that is not an
AbstractComposite and the method requires some contextual information, then
the ComponentIF object delegates the request for contextual information to its
parent.

• Some components may implement operations that are unique to that component.
For example, under the Motivation of this pattern is a design for the recursive
composition of a document. At the lowest level, it has a document consisting of
character and image elements. It is very reasonable for the character elements of a
document to have a getFont method. A document’s image elements have no
need for a getFont method (see the Example section). The main benefit of the
Composite pattern is to allow the clients of a composite object and the objects that
constitute it to be unaware of the specific class of the objects they deal with.

• The Composite pattern allows any ComponentIF object to be a child of an
AbstractComposite. If you need to enforce a more restrictive relationship, then you
will have to add type-aware code to AbstractComposite or its subclasses. That
reduces some of the value of the Composite pattern.

Luca Dan Serbanati - Software Design Techniques

97

Composite - Implementation
Implementation
• If classes that participate in the Composite pattern implement any operations by

delegating them to their parent object, then the best way to preserve speed and
simplicity is to have each instance of AbstractComponent contain a reference to its
parent. It is important to implement the parent pointer in a way that ensures
consistency between parent and child. It must always be true that a ComponentIF
object identifies an AbstractComposite object as its parent if, and only if, the
AbstractComposite identifies it as one of its children. The best way to enforce this
is to modify parent and child references only in the AbstractComposite class’s add
and remove methods.

• The AbstractComposite class may provide a default implementation of child
management for composite objects. However, it is very common for concrete
composite classes to override the default implementation.

• If a concrete composite object delegates an operation to the objects that constitute
it, then caching the result of the operation may improve performance. If a concrete
composite object caches the result of an operation, it is important that the objects
that constitute the composite notify the composite object to invalidate its cached
values.

Luca Dan Serbanati - Software Design Techniques

98

Composite - Example

Character Image

Document Page Column Frame LineOfText

AbstractDocumentElement
getFont() : Font
setFont(font : Font)
getCharLength() : int

getParent() : CompositeDocumentElement

CompositeDocumentElement
getCharLength() : int
addChild(child : DocumentElement)
removeChild(child : DocumentElement)
changeNotification()

getChild(index : int) : DocumentElement

**

DocumentElementIF
getFont() : Font
setFont(font : Font)
getCharLength() : int
getParent() : CompositeDocumentElement

<<interface>>

Luca Dan Serbanati - Software Design Techniques

99

Composite - Code
public interface DocumentElementIF {
...

public CompositeDocumentElement getParent() ;
public Font getFont() ;
public void setFont(Font font) ;
public int getCharLength() ;

} // interface DocumentElementIF

abstract class AbstractDocumentElement
implements DocumentElementIF {

private Font font;
private CompositeDocumentElement parent;
...
public CompositeDocumentElement getParent() {

return parent; } // getParent()
protected void setParent(CompositeDocumentElement parent) {

this.parent = parent; } // setParent(AbstractDocumentElement)
public Font getFont() {

if (font != null)
return font;

else if (parent != null)
return parent.getFont();

else
return null; } // getFont()

public void setFont(Font font) {
this.font = font;

} // setFont(Font)
public abstract int getCharLength() ;

} // class AbstractDocumentElement

public abstract class CompositeDocumentElement
extends AbstractDocumentElement {

private Vector children = new Vector();
private int cachedCharLength = -1;
public DocumentElementIF getChild(int index) {

return (DocumentElementIF)children.elementAt(index);
} // getChild(int)
public synchronized void addChild(DocumentElementIF child) {

synchronized (child) {
children.addElement(child);

((AbstractDocumentElement)child).setParent(this);
changeNotification(); } // synchronized

} // addChild(DocumentElementIF)
public synchronized

void removeChild(AbstractDocumentElement child) {
synchronized (child) {

if (this == child.getParent()) {
child.setParent(null);

} // if children.removeElement(child);
changeNotification();

} // synchronized
} // removeChild(AbstractDocumentElement)

...
public void changeNotification() {

cachedCharLength = -1;
if (getParent() != null)

getParent().changeNotification();
} // changeNotification()

public int getCharLength() {
int len = 0;
for (int i = 0; i < children.size(); i++) {

AbstractDocumentElement thisChild;
thisChild = (AbstractDocumentElement)children.elementAt(i);
len += thisChild.getCharLength();

} // for
cachedCharLength = len;
return len;

} // getCharLength()
} // class CompositeDocumentElement

Luca Dan Serbanati - Software Design Techniques

100

Adapter (I)
Intent

Convert the interface of a class into another interface clients expect. Adapter lets
classes work together that couldn't otherwise because of incompatible interfaces.
An adapter class implements an interface known to its clients and provides access
to an instance of a class not known to its clients. An adapter object provides the
functionality promised by an interface without having to assume what class is used
to implement that interface.

Motivation
Sometimes a toolkit class that's designed for reuse isn't reusable only because its

interface doesn't match the domain-specific interface an application requires.
Consider for example a drawing editor that lets users draw and arrange graphical

elements (lines, polygons, text, etc.) into pictures and diagrams. The drawing
editor's key abstraction is the graphical object, which has an editable shape and
can draw itself. The interface for graphical objects is defined by an abstract class
called Shape. The editor defines a subclass of Shape for each kind of graphical
object: a LineShape class for lines, a PolygonShape class for polygons, and so forth.

Classes for elementary geometric shapes like LineShape and PolygonShape are rather
easy to implement, because their drawing and editing capabilities are inherently
limited. But a TextShape subclass that can display and edit text is considerably
more difficult to implement, since even basic text editing involves complicated
screen update and buffer management.

Luca Dan Serbanati - Software Design Techniques

101

Adapter (II)
Motivation (cont’d)

Meanwhile, an off-the-shelf user interface toolkit might already provide a
sophisticated TextView class for displaying and editing text. Ideally we'd like to
reuse TextView to implement TextShape, but the toolkit wasn't designed with
Shape classes in mind. So we can't use TextView and Shape objects
interchangeably.
Instead, we could define TextShape so that it adapts the TextView interface to
Shape's. We can do this in one of two ways: (1) by inheriting Shape's interface and
TextView's implementation or (2) by composing a TextView instance within a
TextShape and implementing TextShape in terms of TextView's interface. These two
approaches correspond to the class and object versions of the Adapter pattern. We
call TextShape an adapter.

PolygonShape
box()

createManager()

Editor
Shape

box()
createManager()1..*1..1 1..*1..1

TextShape
box()

createManager()

TextView
getExtension()

Luca Dan Serbanati - Software Design Techniques

102

Adapter (III)
Applicability
1. you want to use an existing class, and its interface does not match the one you

need.
2. you want to create a reusable class that cooperates with unrelated or unforeseen

classes, that is, classes that don't necessarily have compatible interfaces.
3. (object adapter only) you need to use several existing subclasses, but it's

impractical to adapt their interface by subclassing every one. An object adapter
can adapt the interface of its parent class.

Structure
Target (Shape) defines the domain-specific interface that Client uses.
Client (DrawingEditor) collaborates with objects conforming to the Target
interface.
Adaptee (TextView) defines an existing interface that needs adapting.
Adapter (TextShape) adapts the interface of Adaptee to the Target interface.

Luca Dan Serbanati - Software Design Techniques

103

Adapter (IV)
A class adapter uses multiple
inheritance to adapt one interface to
another:

An object adapter relies on object
composition:

Target
request()

specificRequest()Adapter
request()

Adaptee

specificRequest()

+adaptee

Adapter

Client
Target Adapt

er

Adapte
e

Client

Adapter
request()

Adaptee
specificRequest()

Target
request()

specificRequest()

Adapte
r

Client
Target Adap

ter

Adapte
e

Client

Luca Dan Serbanati - Software Design Techniques

104

Adapter (V)
Colaborations

Clients call operations on an Adapter instance. In turn, the adapter calls Adaptee
operations that carry out the request.

Consequences
Class and object adapters have different trade-offs. A class adapter
1. adapts Adaptee to Target by committing to a concrete Adapter class. As a

consequence, a class adapter won't work when we want to adapt a class and
all its subclasses.

2. lets Adapter override some of Adaptee's behavior, since Adapter is a subclass
of Adaptee.

3. introduces only one object, and no additional pointer indirection is needed to
get to the adaptee.

An object adapter
1. lets a single Adapter work with many Adaptees—that is, the Adaptee itself and

all of its subclasses (if any). The Adapter can also add functionality to all
Adaptees at once.

2. makes it harder to override Adaptee behavior. It will require subclassing
Adaptee and making Adapter refer to the subclass rather than the Adaptee
itself.

A
D

Adapter

Luca Dan Serbanati - Software Design Techniques

105

Adapter - Implementare
Implementation

Consider a TreeDisplay widget that can display tree structures graphically. If this
were a special-purpose widget for use in just one application, then we might
require the objects that it displays to have a specific interface; that is, all must
descend from a Tree abstract class. But if we wanted to make TreeDisplay more
reusable (say we wanted to make it part of a toolkit of useful widgets), then that
requirement would be unreasonable. Applications will define their own classes for
tree structures. They shouldn't be forced to use our Tree abstract class. Different
tree structures will have different interfaces.
The first step, which is common to all three of the implementations discussed here,
is to find a "narrow" interface for Adaptee, that is, the smallest subset of
operations that lets us do the adaptation. A narrow interface consisting of only a
couple of operations is easier to adapt than an interface with dozens of operations.
For TreeDisplay, the adaptee is any hierarchical structure. A minimalist interface
might include two operations, one that defines how to present a node in the
hierarchical structure graphically, and another that retrieves the node's children.
The narrow interface leads to two implementation approaches:

A
D

Adapter

Luca Dan Serbanati - Software Design Techniques

106

Adapter (VI)
Using abstract operations. Define corresponding abstract operations for the narrow
Adaptee interface in the TreeDisplay class. Subclasses must implement the abstract
operations and adapt the hierarchically structured object. For example, a
DirectoryTreeDisplay subclass will implement these operations by accessing the
directory structure.
DirectoryTreeDisplay specializes the narrow interface so that it can display
directory structures made up of FileSystemEntity objects.

TreeDisplay

getChildren(Node)

createGraphicNode(Node)

display()

buildTree(Node n)

getChildren(n)

for each child {

addGraphicNode(createGraphicNode(child))

buildTree(child)

}

Adapter

Client, Target

Adaptee
DirectoryTreeDisplay

getChildren(Node)

createGraphicNode(Node)

FileSystemEntity

**

Luca Dan Serbanati - Software Design Techniques

107

Adapter (VII)
• Using delegate objects. In this approach, TreeDisplay forwards requests for

accessing the hierarchical structure to a delegate object. TreeDisplay can use a
different adaptation strategy by substituting a different delegate. For example,
suppose there exists a DirectoryBrowser that uses a TreeDisplay.
DirectoryBrowser might make a good delegate for adapting TreeDisplay to the
hierarchical directory structure.

TreeAccessorDelegate
getChildren(TreeDisplay,Node)
createGraphicNode(Node)

TreeDisplay
display()
buildTree(Node n)
setDelegate(Delegate)

+delegate

DirectoryBrowser
getChildren(TreeDisplay,Node)
createGraphicNode(Node)
createFile()
deleteFile()

FileSystemEntity
**

Adaptee

Adapter

Client

Target

delegate.getChildren(this, n)
for each child {

addGraphicNode(delegate.createGraphicNode(this,child))
buildTree(child)
}

Luca Dan Serbanati - Software Design Techniques

108

Iterator (I)Intent
The Iterator pattern defines an interface that declares methods for sequentially
accessing the objects in a collection without exposing its underlying representation
. A class that accesses a collection only through such an interface is independent of
the class that implements the interface and the class of the collection.

Motivation
• Suppose you are writing classes to browse inventory in a warehouse. There will be

a user interface that allows a user to see the description, quantity on hand,
location, and other information about each inventory item.

• The inventory browsing classes will be part of a customizable application. For this
reason, they must be independent of the actual class that provides collections of
inventory items. To provide this independence, you design an interface to allow the
user interface to sequentially access a collection of inventory items without having
to be aware of the actual collection class being used.

• An instance of the InventoryBrowser class is asked to display InventoryItem objects
in the collection encapsulated by an InventoryCollection object. The
InventoryBrowser object does not directly access the InventoryCollection object.
Instead, it is given an object that implements the InventoryIteratorIF interface. The
InventoryIteratorIF interface defines methods to allow an object to sequentially
fetch the contents of a collection of InventoryItem objects.

I
T

Iterator

Luca Dan Serbanati - Software Design Techniques

109

Iterator (II)

InventoryIterator InventoryCollection

iterator() : InventoryIteratorIF
1..1* 1..1*

gets-inventory-items-from

InventoryItem

**

InventoryBrowser

*

1..1

*

1..1

display

InventoryIteratorIF

hasNextItem() : boolean
getNextItem() : InventoryItem
hasPrevItem() : boolean
getPrevItem() : InventoryItem

<<Interface>>

1..1

1..1

gets-inventory-items-from

1..1

1..1

I
T

Iterator

Luca Dan Serbanati - Software Design Techniques

110

Iterator (III)

Structure

• Collection. A class in this role encapsulates a collection of objects or values.
• IteratorIF. An interface in this role defines methods to sequentially access the

objects that are encapsulated by a Collection object.
• Iterator. A class in this role implements an IteratorIF interface. Its instances

provide sequential access to the contents of the Collection object associated with
Iterator object.

• CollectionIF. Collection classes normally take responsibility for creating their own
iterator objects. It is convenient to have a consistent way to ask a Collection object
to create an Iterator object for itself. To provide that consistency, all Collection
classes implement a CollectionIF interface that declares a method for creating
Iterator objects.

CollectionIF
iterator() : IteratorIF

<<Interface>> IteratorIF
hasNextItem() : boolean
getNextItem() : CollectionItem

<<Interface>>Creates

IteratorCollection
Fetches_objects_from

I
T

Iterator

Luca Dan Serbanati - Software Design Techniques

111

Iterator (IV)
• Applicability
• A class needs access to the contents of a collection without becoming dependent

on the class that is used to implement the collection (without exposing its internal
representation).

• A class needs a uniform way of accessing the contents of multiple collections (that
is, to support polymorphic iteration).

Collaborations
A ConcreteIterator keeps track of the current object in the aggregate and can
compute the succeeding object in the traversal.

Consequences
• It is possible to access a collection of objects without knowing the source of the

objects.
• By using multiple iterator objects, it is simple to have and manage multiple

traversals at the same time.
• A collection class may provide different kinds of iterator objects to traverse the

collection in different ways. For example, a collection class that maintains an
association between key objects and value objects may have a different method for
creating iterators that traverse just the key objects and for creating iterators that
traverse just the value objects.

I
T

Iterator

Luca Dan Serbanati - Software Design Techniques

112

Iterator - Implementation
Implementation
1. Who controls the iteration? The iterator or the client that uses the iterator? When

the client controls the iteration, the iterator is called an external iterator, and
when the iterator controls it, the iterator is an internal iterator. Clients that use an
external iterator must advance the traversal and request the next element
explicitly from the iterator. In contrast, the client hands an internal iterator an
operation to perform, and the iterator applies that operation to every element in
the aggregate. External iterators are more flexible than internal iterators. It's easy
to compare two collections for equality with an external iterator, for example, but
it's practically impossible with internal iterators.

2. Who defines the traversal algorithm? The iterator is not the only place where the
traversal algorithm can be defined. The collection might define the traversal
algorithm and use the iterator to store just the state of the iteration. We call this
kind of iterator a cursor, since it merely points to the current position in the
aggregate. A client will invoke the Next operation on the aggregate with the cursor
as an argument, and the Next operation will change the state of the cursor.3 If the
iterator is responsible for the traversal algorithm, then it's easy to use different
iteration algorithms on the same aggregate, and it can also be easier to reuse the
same algorithm on different aggregates. On the other hand, the traversal algorithm
might need to access the private variables of the aggregate. If so, putting the
traversal algorithm in the iterator violates the encapsulation of the aggregate.

I
T

Iterator

Luca Dan Serbanati - Software Design Techniques

113

Iterator – Implementation (II)
3. How robust is the iterator? It can be dangerous to modify an aggregate while you're

traversing it. If elements are added or deleted from the aggregate, you might end
up accessing an element twice or missing it completely. A simple solution is to copy
the aggregate and traverse the copy, but that's too expensive to do in general. A
robust iterator ensures that insertions and removals won't interfere with traversal,
and it does it without copying the aggregate. There are many ways to implement
robust iterators. Most rely on registering the iterator with the aggregate. On
insertion or removal, the aggregate either adjusts the internal state of iterators it
has produced, or it maintains information internally to ensure proper traversal.

4. Additional Iterator operations. The minimal interface to Iterator consists of the
operations First, Next, IsDone, and CurrentItem. Some additional operations might
prove useful. For example, ordered aggregates can have a Previous operation that
positions the iterator to the previous element. A SkipTo operation is useful for
sorted or indexed collections. SkipTo positions the iterator to an object matching
specific criteria.

5. Iterators may have privileged access. An iterator can be viewed as an extension of
the aggregate that created it. The iterator and the aggregate are tightly coupled.
However, such privileged access can make defining new traversals difficult, since
it'll require changing the aggregate interface to add another friend. To avoid this
problem, the Iterator class can include protected operations for accessing
important but publicly unavailable members of the aggregate. Iterator subclasses
(and only Iterator subclasses) may use these protected operations to gain
privileged access to the aggregate.

Luca Dan Serbanati - Software Design Techniques

114

Iterator - Implementation (III)
6. Iterators for composites. External iterators can be difficult to implement over

recursive aggregate structures like those in the Composite pattern, because a
position in the structure may span many levels of nested aggregates. Therefore an
external iterator has to store a path through the Composite to keep track of the
current object. Sometimes it's easier just to use an internal iterator. It can record
the current position simply by calling itself recursively, thereby storing the path
implicitly in the call stack. If the nodes in a Composite have an interface for moving
from a node to its siblings, parents, and children, then a cursor-based iterator may
offer a better alternative. The cursor only needs to keep track of the current node;
it can rely on the node interface to traverse the Composite. Composites often need
to be traversed in more than one way. Preorder, postorder, inorder, and breadth-
first traversals are common. You can support each kind of traversal with a different
class of iterator.

7. Null iterators. A NullIterator is a degenerate iterator that's helpful for handling
boundary conditions. By definition, a NullIterator is always done with traversal;
that is, its IsDone operation always evaluates to true. NullIterator can make
traversing tree-structured aggregates (like Composites) easier. At each point in the
traversal, we ask the current element for an iterator for its children. Aggregate
elements return a concrete iterator as usual. But leaf elements return an instance
of NullIterator. That lets us implement traversal over the entire structure in a
uniform way.

Luca Dan Serbanati - Software Design Techniques

115

Iterator – Code Sample
public interface InventoryIteratorIF {

public boolean hasNextInventoryItem() ;
public InventoryItem getNextInventoryItem() ;
public boolean hasPrevInventoryItem() ;
public InventoryItem getPrevInventoryItem() ;

} // interface InventoryIterator
/**
* Istanze di questa classe rappresenta articoli

nelle scorte
*/

public class InventoryItem {
//...

} // class InventoryItem
public class InventoryCollection {
...

public InventoryIteratorIF iterator() {
return new InventoryIterator();

} // iterator()
private class InventoryIterator implements
InventoryIteratorIF {

public boolean hasNextInventoryItem() {
...

} // hasNextInventoryItem()
public InventoryItem

getNextInventoryItem() {
...

} // getNextInventoryItem()
public boolean hasPrevInventoryItem() {
...

} // hasPrevInventoryItem()
public InventoryItem

getPrevInventoryItem() {
...

} // getPrevInventoryItem()
} // class InventoryIterator
...

} // class InventoryCollection

I
T

Iterator

InventoryIterator InventoryCollection
iterator() : InventoryIteratorIF1..1* 1..1*

gets-inventory-items-from

InventoryItem

**

InventoryBrowser

*

1..1

*

1..1

display

InventoryIteratorIF
hasNextItem() : boolean
getNextItem() : InventoryItem

hasPrecArticolo() : boolean
getPrevItem() : InventoryItem

<<Interface>>

1..1

1..1

gets-inventory-items-from

1..1

1..1

CollectionIF

iterator() : InventoryIteratorIF

<<Interface>>

1..11..1
creates_an_InventoryIterator

1..11..1

Luca Dan Serbanati - Software Design Techniques

116

Bridge (I)Intent
Decouple an abstraction from its implementation so that the two can vary
independently. The Bridge pattern is useful when there is a hierarchy of
abstractions and a corresponding hierarchy of implementations. Rather than
combining the abstractions and implementations into many distinct classes, the
Bridge pattern implements the abstractions and implementations as independent
classes that can be combined dynamically.

Motivation
Consider the implementation of a portable Window abstraction in a user interface
toolkit. This abstraction should enable us to write applications that work on both
the X Window System and IBM's Presentation Manager (PM), for example. Using
inheritance, we could define an abstract class Window and subclasses XWindow
and PMWindow that implement the Window interface for the different platforms.
Drawbacks!

1. It makes client code platform-dependent.
2.

B
R

Bridge

Bridge (II)

• Bridge puts the Window abstraction and its implementation in separate class
hierarchies.

Luca Dan Serbanati - Software Design Techniques

117

WindowImp
DevDrawText()
DevDrawLine()

imp.DevDrawLine();
imp.DevDrawLine()
imp.DevDrawLine();
imp.DevDrawLine();

Window
DrawText()
DrawRect()

+imp

IconWindow
DrawBorder()

TransientWindow
DrawCloseBox()

XWindowImp
DevDrawText()
DevDrawLine()

PMWindowImp
DevDrawLine()
DevDrawText()

DrawRect();
DrawText(); DrawRect(); XDrawLine();XDrawString();

Bridge

Bridge

Abstract
ion

RefinedAbstr
action

Implem
entor

RefinedAbstr
action

ConcreteImple
mentor

ConcreteImple
mentor

B
R

Bridge

Luca Dan Serbanati - Software Design Techniques

118

.

Bridge (III)

RefinedAbstraction
specializedOperation()

ConcreteImplementorA
operationImp()

ConcreteImplementorB
operationImp()

Implementor
operationImp()

imp.operationImp();

Client

Abstraction
operation()

+imp

B
R

Bridge

Participants
Abstraction (Window)

– defines the abstraction's interface.
– maintains a reference to an object of type Implementor.

RefinedAbstraction (IconWindow)
Extends the interface defined by Abstraction.

Implementor (WindowImp)
– defines the interface for implementation classes. This interface doesn't have to

correspond exactly to Abstraction's interface; in fact the two interfaces can be
quite different. Typically the Implementor interface provides only primitive
operations, and Abstraction defines higher-level operations based on these
primitives.

ConcreteImplementor (XWindowImp, PMWindowImp)
– implements the Implementor interface and defines its concrete

implementation.

Bridge (IV)
Applicability
• When you combine hierarchies of abstractions and hierarchies of their

implementations into a single class hierarchy, classes that use those classes
become tied to a specific implementation of the abstraction. Changing the
implementation used for an abstraction should not require changes to the classes
that use the abstraction.

• You would like to reuse logic common to different implementations of an
abstraction. The usual way to make logic reusable is to encapsulate it in a separate
class.

• You would like to be able to create a new implementation of an abstraction without
having to re-implement the common logic of the abstraction.

• You would like to be able to extend the common logic of an abstraction by writing
one new class rather than writing a new class for each combination of the base
abstraction and its implementation.

• When appropriate, multiple abstractions should be able to share the same
implementation.

Luca Dan Serbanati - Software Design Techniques

119

B
R

Bridge

Luca Dan Serbanati - Software Design Techniques

120

Bridge (V)

Extended Model:

Impl2

Impl1

SpecializedImpl1

SpecializedImpl2

Abstraction
operation()

AbstractionImpl
operation()

<<Interface>>

1..11..1

Uses

1..11..1

SpecializedAbstraction
specializedOperation()

SpecializedAbstractionImpl
specializedOperation()

<<Interface>>

1..11..1

Uses

1..11..1

B
R

Bridge

Luca Dan Serbanati - Software Design Techniques

121

Bridge (VI)

Exemple
Suppose you need to provide classes that access physical sensors for control
applications. These are devices such as scales, speed-measuring devices, and
location-sensing devices. What these devices have in common is that they perform
a physical measurement and produce a number.A way that these devices differ is in
the type of measurement that they produce:
– The scale produces one number based on a measurement at a single point in

time.
– The speed-measuring device produces a single measurement that is an average

over a period of time.
– The location-sensing device produces a stream of measurements.

• A difficulty in achieving the reuse is that the details of communicating with sensors
from different manufacturers vary.

• A way to accomplish that is to add some indirection that shields a hierarchy of
classes that support abstractions from classes that implement those abstractions.
Have the abstraction classes access implementation classes through a hierarchy of
implementation interfaces that parallels the abstraction hierarchy.

SensoreSemplice

SensoreMedia SensoreFlusso

SensoreSempliceA SensoreSempliceB

SensoreMediaA SensoreFlussoA SensoreFlussoBSensoreMediaB

1) 2)
B

R

Bridge

Luca Dan Serbanati - Software Design Techniques

122

Bridge – An extended model (VII)

SensoreSempliceA

SensoreSempliceB

SensoreMediaA

SensoreFlussoA

SensoreFlussoB

SensoreMediaB

SensoreMedia
startMedia()

SensoreMediaImpl
startMedia()

<<Interface>>

1..1

1..1

SensoreFlusso
startCampioneFreq()

SensoreFlussoImpl
startCampioneFreq()

<<Interface>>

1..1

1..1

SensoreSemplice
getValore()

SensoreSempliceImpl
getValore()

<<Interface>>

1..1

1..1
Uses

1..1

1..1

Uses

1..1

1..1

Uses

1..1

1..1

1. Ierahia sezorilor
independenta de
producatori

2. Ierarhie de interfete
care permite
independenta ierarhiei
de senzori abstracti de
ierarhia de senzori
concreti

3. Ierarhia de senzori
specifici pentru
producatorii A si B

B
R

Bridge

Luca Dan Serbanati - Software Design Techniques

123

Bridge - Consequences
Consequences
• Decoupling interface and implementation. An implementation is not bound permanently to

an interface. The implementation of an abstraction can be configured at run-time. It's even
possible for an object to change its implementation at run-time. Decoupling Abstraction and
Implementor also eliminates compile-time dependencies on the implementation. Changing
an implementation class doesn't require recompiling the Abstraction class and its clients.
This property is essential for ensuring binary compatibility between different versions of a
class library. This decoupling encourages layering that can lead to a better-structured system.
The high-level part of a system only has to know about Abstraction and Implementor.

• Improved extensibility. You can extend the Abstraction and Implementor hierarchies
independently.

• Hiding implementation details from clients. You can shield clients from implementation
details, like the sharing of implementor objects and the accompanying reference count
mechanism (if any).

Implementation
• One issue that always must be decided when implementing the Bridge pattern is how to

create implementation objects for each abstraction object. The most basic decision to make
is whether abstraction objects will create their own implementation objects or delegate the
creation of their implementation objects to another object.

• Having the abstraction objects delegate the creation of implementation objects is usually the
best choice. It preserves the independence of the abstraction and implementation classes. If
abstraction classes are designed to delegate the creation of implementation objects, then
the design usually uses the Abstract Factory pattern to create the implementation objects.

B
R

Bridge

Luca Dan Serbanati -
Software Design Techniques

124

Bridge - Implementation
// Instances of this class are used to represent sensors only.
public class SimpleSensor {

// object which implements specific operations of the effective sensor.
private SimpleSensorImpl impl;
/* This constructor is called by a FactoryMethod object thst is found in the same

package with the class SimpleSensor and the classi which implement it.
@param impl is the object that implements the specific operations of the
effective sensor.

*/
SimpleSensor(SimpleSensorImpl impl) {

this.impl = impl;
} // constructor(SimpleSensorImpl)

/* With this method the subclasses of this class find the object to implement.
*/
protected SimpleSensorImpl getImpl() {

return impl;
} // getImpl()

//...
/* Return of the measurement value.
*/
public int getValue() throws SensorException {

return impl.getValue();
} // getValue()

} // class SimpleSensor

/* This interface is implemented by all objects that implement the operations of
the objects SimpleSensor.

*/
interface SimpleSensorImpl {

public int getValue() throws SensorException;
} // interface SimpleSensorImpl

/* the class implements the operations of the SimpleSensor for the provider A.
*/

class SimpleSensorA implements SimpleSensorImpl {
public int getValue() throws SensorException {

int valore;
//...
return valore;

} // getValue()
} // class SimpleSensorA

/* the class implements the operations of the SimpleSensor for the provider B.
*/

class SimpleSensorB implemenSimpleSensorImpl {
public int getValue() throws SensorException {

int valore;
//...
return valore;

} // getValue()
} // class SimpleSensorB
ts

/* The instances of this class are used to represent any sensor that return average
values of measurements for a period.

*/
public class MediaSensor extends SimpleSensor {

/*
This constructor is called by a FactoryMethod object thst is found in the same
package with the class MediaSensor and the classi which implement it.

@param impl is the object that implements the specific operations of the
effective sensor.

*/
MediaSensor(MediaSensorImpl impl) {

super(impl);
} // constructor(MediaSensorImpl)

//...

/* Return of the measurement value
@exception SensorException
*/
public void startMedia() throws SensorException {

((MediaSensorImpl)getImpl()).startMedia();
} // startMedia()

} // class MediaSensor

/* This interface is implemented by all objects that implement the operations of
the objects MediaSensor.

interface MediaSensorImpl extends SimpleSensorImpl {
public void startMedia() throws SensorException;

} // interface MediaSensorImpl

/* The class implements the operations of the MediaSensor for the provider A.
*/

class MediaSensorA extends SimpleSensorA implements MediaSensorImpl {
public void startMedia() throws SensorException {

//...
} // startMedia()

} // class MediaSensorA

/* the class implements the operations of the MediaSensor for the provider B.
*/

class MediaSensorB extends SimpleSensorB implements MediaSensorImpl {
public void startMedia() throws SensorException {

//...
} // startMedia()

} // class MediaSensorB

B
R

Bridge

Luca Dan Serbanati - Software Design Techniques

125

Façade (I)

Intent
Provides a unified interface to a set of interfaces in a subsystem. Façade defines a
higher-level interface that makes the subsystem easier to use. The Façade pattern
simplifies access to a related set of objects by providing one object that all objects
outside the set use to communicate with the set.

Motivation
Consider the organization of classes to support the creation and sending of email
messages.

1. A MessageBody class whose instances will contain message bodies.
2. An Attachment class whose instances will contain message attachments that can be

attached to a MessageBody object.
3. A MessageHeader class whose instances will contain header information (to, from,

subject, etc.) for an email message.

Facade

Clients

Classes of
the subsystem

Classes of
the subsystem

Clients
F

A

Façade

Luca Dan Serbanati - Software Design Techniques

126

Façade (II)
Motivation (cont.d)
4. A Message class whose instances will tie together a MessageHeader object and a

MessageBody object.
5. A Security class whose instances can be used to add a digital signature to a

message.
6. A MessageSender class whose instances are responsible for sending Message

objects to a server that is responsible for delivering the email to its destination or
to another server.

Working with these email classes adds complexity to a client class. To use these
classes, a client must know of at least these six of them, the relationships between
them, and the order in which it must create instances of the classes.

The Façade pattern is a way to shield clients of classes like these email classes from
their complexity. It works by providing an additional reusable object that hides
most of the complexity of working with the other classes from client classes.

In this new scheme, the portion of the Client class that was responsible for interacting
with the email classes has been refactored into a separate reusable class. Client
classes now need only be aware of the MessageCreator class. Furthermore, the
internal logic of the MessageCreator class can shield client classes from having to
create the parts of an email message in any particular order.

F
A

Façade

Luca Dan Serbanati - Software Design Techniques

127

Façade (III)

Attachment MessageHeader
**

MessageSenderMessage

1..11..1
0..* 1..1sends0..*

+sender
1..1

MessageBody

Client

*

1..1

*

1..1
creates

*

1..1

*

1..1
creates

1..1

1..1

1..1

1..1
creates

1..1

1..1

1..1

1..1

creates

1..1

1..1

Security
1..1 0..11..1 0..1

0..1

1..1

creates

1..1

1..1
creates

0..1

1..1

1..11..1

Attachment MessageHeader
**

MessageSenderMessage

1..11..1
0..* 1..1sends0..*

+sender
1..1

MessageBody

Message
Creator

*

1..1

*

1..1
creates

*

1..1

*

1..1
crea
tes

1..1

1..1

1..1

1..1
creates

1..1

1..1

1..1

1..1

creates

1..1

Security
1..1 0..11..1 0..1

0..1

1..1

creates

1..1

creates

0..1

Clientuses

F
A

Façade

Attachment MessageHeader
**

MessageSenderMessage

1..11..1

0..* 1..1sends0..*

+sender

1..1

MessageBody

Message
Creator

*

1..1

*

1..1

creates

*

1..1

*

1..1

creates

1..1

1..1

1..1

1..1

creates

1..1

1..1

1..1

1..1

creates

1..1

Security

1..1 0..11..1 0..1

0..1

1..1

creates

1..1

creates

0..1

Client uses

Luca Dan Serbanati - Software Design Techniques

128

Façade (IV)
Structure
Façade knows which subsystem classes are responsible for a request and delegates

client requests to appropriate subsystem objects.
subsystem classes implement subsystem functionality, handle work assigned by the

Facade object and have no knowledge of the facade; that is, they keep no
references to it.

Applicability
1. There are many dependencies between classes that implement an abstraction and

their client classes. The dependencies add noticeable complexity to clients.
2. You want to simplify the client classes, because simpler classes result in fewer

bugs. Simpler clients also mean that less work is required to reuse the classes that
implement the abstraction.

3. You are designing classes to function in cleanly separated layers. You want to
minimize the number of classes that are visible from one layer to the next.

Collaborations
• Clients communicate with the subsystem by sending requests to Facade, which

forwards them to the appropriate subsystem object(s). Although the subsystem
objects perform the actual work, the facade may have to do work of its own to
translate its interface to subsystem interfaces.

• Clients that use the facade don't have to access its subsystem objects directly

F
A

Façade

Luca Dan Serbanati - Software Design Techniques

129

Façade (V)
Consequencies
• It shields clients from subsystem components, thereby reducing the number of

objects that clients deal with and making the subsystem easier to use.
• It promotes weak coupling between the subsystem and its clients.
• It doesn't prevent applications from using subsystem classes if they need to. Thus

you can choose between ease of use and generality.
Implementation
Consider the following issues when implementing a facade:
• Reducing client-subsystem coupling. The coupling between clients and the

subsystem can be reduced even further by making Façade an abstract class with
concrete subclasses for different implementations of a subsystem. Then clients can
communicate with the subsystem through the interface of the abstract Façade
class. This abstract coupling keeps clients from knowing which implementation of a
subsystem is used.

• Public versus private subsystem classes. A subsystem is analogous to a class in that
both have interfaces, and both encapsulate something - a class encapsulates state
and operations, while a subsystem encapsulates classes. And just as it's useful to
think of the public and private interface of a class, we can think of the public and
private interface of a subsystem. The public interface to a subsystem consists of
classes that all clients can access; the private interface is just for subsystem
extenders. The Façade class is part of the public interface, of course, but it's not the
only part.

F
A

Façade

Luca Dan Serbanati -
Software Design Techniques

130

Façade (VI)
import java.util. *;
/*

the instances of this class are used for the construction and sending of
email messages. A message is composed from a header, a body and
zero o several attachments. A body may be a string or an object which
implements an interface RichText. An attachment can contain any
object.

*/
public class MessageCreator {

// Constants of the message type .
public final static int MIME = 1;
public final static int MAPI = 2;
public final static int NOTES = 3;
public final static int BANYAN = 4;
private Hashtable headerFields = new Hashtable();
private RichText messageBody;
private Vector attachments = new Vector();
private boolean signMessage;

/* Costructors of a MessageCreator. */
public MessageCreator(String to, String from, String subject) {

this(to, from , subject, inferMessageType(to));
} // Constructor(String, String, String)

public MessageCreator(String to, String from, String subject, int type) {
headerFields.put("to", to);
headerFields.put("from", from);
headerFields.put("subject", subject);
//...

} // Constructor(String, String, String, int)
/* Composes a MessageBody from a string. */

public void setMessageBody(String messageBody) {
setMessageBody(new RichTextString(messageBody));

} // setMessageBody(String)

/* Composes a MessageBody from a RichText. */
public void setMessageBody(RichText messageBody) {

this.messageBody = messageBody;
} // setMessageBody(RichText)

/* Adds an attachment to a message. */
public void addAttachment(Object attachment) {

attachments.addElement(attachment);
} // addAttachment(Object)

/* Marks if the message is to be signed . */
public void setSignMessage(boolean signFlag) {

signMessage = signFlag;
} // setSignMessage(boolean)

/* Assigns a value to a HeaderField */
public void setHeaderField(String name, String value) {

headerFields.put(name.toLowerCase(), value);
} // setHeaderField(String, String)
/* Sends the message. */
public void send() {

MessageBody body = new MessageBody(messageBody);
for (int i = 0; i < attachments.size(); i++) {

body.addAttachment(new Attachment(attachments.elementAt(i)));
} // for
MessageHeader header = new MessageHeader(headerFields);
Message msg = new Message(header, body);
if (signMessage) {

msg.setSecurity(createSecurity());
} // if
createMessageSender(msg);

} // send()
/* Infers the message type from the destination address . */
private static int inferMessageType(String address) {

int type = 0;
//...
return type;

} // inferMessageType(String)
/* Creates an object Security appropriate for the signature of the message.

*/
private Security createSecurity() {

Security s = null;
//...
return s;

} // createSecurity()
/* Creates an object MessageSender appropriate for the tyoe of the

message to be sent. */
private void createMessageSender(Message msg) {

//...
} // createMessageSender(Message)
//...

} // class MessageCreator

F
A

Façade

Luca Dan Serbanati - Software Design Techniques

131

Decorator (Wrapper)
Intent

Attach additional responsibilities to an object dynamically. Decorators
provide a flexible alternative to subclassing for extending functionality. The
Decorator pattern extends the functionality of an object in a way that is
transparent to its clients, by implementing the same interface as the original
class and delegating operations to the original class.

Motivation
• Sometimes we want to add responsibilities to individual objects, not to an

entire class. A graphical user interface toolkit, for example, should let you
add properties like borders or behaviors like scrolling to any user interface
component. One way to add responsibilities is with inheritance. Inheriting a
border from another class puts a border around every subclass instance.
This is inflexible, however, because the choice of border is made statically. A
client can't control how and when to decorate the component with a border.

• A more flexible approach is to enclose the component in another object that
adds the border. The enclosing object is called a decorator. The decorator
conforms to the interface of the component it decorates so that its presence
is transparent to the component's clients. The decorator forwards requests to
the component and may perform additional actions (such as drawing a
border) before or after forwarding. Transparency lets you nest decorators
recursively, thereby allowing an unlimited number of added responsibilities.

D
E

Decorator

Luca Dan Serbanati - Software Design Techniques

132

Decorator (II)
For example, suppose we have a TextView object that displays text in a window.
TextView has no scroll bars by default, because we might not always need them.
When we do, we can use a ScrollDecorator to add them. Suppose we also want to
add a thick black border around the TextView. We can use a BorderDecorator to
add this as well. We simply compose the decorators with the TextView to produce
the desired result.

The following object diagram shows how to compose a TextView object with
BorderDecorator and ScrollDecorator objects to produce a bordered, scrollable text
view:

a:BorderDecorator

component

s:ScrollDecorator

component

t:TextField

D
E

Decorator

Luca Dan Serbanati - Software Design Techniques

133

Decorator (III)
• The ScrollDecorator and BorderDecorator classes are

subclasses of Decorator, an abstract class for visual
components that decorate other visual components.

• VisualComponent is the abstract class for visual
objects. It defines their drawing and event handling
interface. Note how the Decorator class simply
forwards draw requests to its component, and how
Decorator subclasses can extend this operation.

• Decorator subclasses are free to add operations for
specific functionality. For example, ScrollDecorator's
ScrollTo operation lets other objects scroll the
interface if they know there happens to be a
ScrollDecorator object in the interface. The important
aspect of this pattern is that it lets decorators appear
anywhere a VisualComponent can. That way clients
generally can't tell the difference between a decorated
component and an undecorated one, and so they
don't depend at all on the decoration.

TextField
draw()

ScrollDecorator
scrollPosition

draw()
scrollTo()

BorderDecorator
borderWidth

draw()
drawBorder()

VisualComponent
draw()

Decorator
draw()

+component

component.draw()

D
E

Decorator

Luca Dan Serbanati - Software Design Techniques

134

Decorator (IV)
Structure
• Component (VisualComponent) defines the

interface for objects that can have
responsibilities added to them dynamically.

• ConcreteComponent (TextView) defines an
object to which additional responsibilities
can be attached.

• Decorator maintains a reference to a
Component object and defines an interface
that conforms to Component's interface.

• ConcreteDecorator (BorderDecorator,
ScrollDecorator) adds responsibilities to the
component.

ConcreteComponent

operation()

ConcreteDecoratorA

AddedVar

operation()

ConcreteDecoratorB

operation()
addedOp)

Component

operation()

Decorator

operation()

+component

component.operation()

D
E

DecoratorDecorator

Concrete
Component

Concrete
Decorator

Decorator

Component

Collaborations
Decorator forwards requests to its Component object. It may optionally perform
additional operations before and after forwarding the request.

Luca Dan Serbanati - Software Design Techniques

135

Decorator (V)
Consequences
The Decorator pattern has at least two key benefits and two liabilities:
1. More flexibility than static inheritance. The Decorator pattern provides a more

flexible way to add responsibilities to objects than can be had with static (multiple)
inheritance. With decorators, responsibilities can be added and removed at run-
time simply by attaching and detaching them. In contrast, inheritance requires
creating a new class for each additional responsibility (e.g.,
BorderedScrollableTextView, BorderedTextView). This gives rise to many classes
and increases the complexity of a system. Furthermore, providing different
Decorator classes for a specific Component class lets you mix and match
responsibilities. Decorators also make it easy to add a property twice. For example,
to give a TextView a double border, simply attach two BorderDecorators. Inheriting
from a Border class twice is error-prone at best.

2. Avoids feature-laden classes high up in the hierarchy. Decorator offers a pay-as-you-
go approach to adding responsibilities. Instead of trying to support all foreseeable
features in a complex, customizable class, you can define a simple class and add
functionality incrementally with Decorator objects. Functionality can be composed
from simple pieces. As a result, an application needn't pay for features it doesn't
use. It's also easy to define new kinds of Decorators independently from the classes
of objects they extend, even for unforeseen extensions. Extending a complex class
tends to expose details unrelated to the responsibilities you're adding.

D
E

Decorator

Decorator (VI)

3. A decorator and its component aren't identical. A decorator acts as a
transparent enclosure. But from an object identity point of view, a decorated
component is not identical to the component itself. Hence you shouldn't rely
on object identity when you use decorators.

4. Lots of little objects. A design that uses Decorator often results in systems
composed of lots of little objects that all look alike. The objects differ only in
the way they are interconnected, not in their class or in the value of their
variables. Although these systems are easy to customize by those who
understand them, they can be hard to learn and debug.

Luca Dan Serbanati - Software Design Techniques

136

D
E

Decorator

Luca Dan Serbanati - Software Design Techniques

137

Decorator - Implementation
1. Interface conformance. A decorator object's interface must conform to the

interface of the component it decorates. ConcreteDecorator classes must therefore
inherit from a common class.

2. Omitting the abstract Decorator class. There's no need to define an abstract
Decorator class when you only need to add one responsibility. That's often the case
when you're dealing with an existing class hierarchy rather than designing a new
one. In that case, you can merge Decorator's responsibility for forwarding requests
to the component into the ConcreteDecorator.

3. Keeping Component classes lightweight. To ensure a conforming interface,
components and decorators must descend from a common Component class. It's
important to keep this common class lightweight; that is, it should focus on
defining an interface, not on storing data. The definition of the data representation
should be deferred to subclasses; otherwise the complexity of the Component class
might make the decorators too heavyweight to use in quantity. Putting a lot of
functionality into Component also increases the probability that concrete
subclasses will pay for features they don't need.

4. Changing the skin of an object versus changing its guts. We can think of a decorator
as a skin over an object that changes its behavior. An alternative is to change the
object's guts. The Strategy pattern is a good example of a pattern for changing the
guts.

D
E

Decorator

Luca Dan Serbanati - Software Design Techniques

138

Decorator - Code
Code

V
P

Decorator

interface VisualComponent {
public void draw();

}
abstract class Decorator implments VisualComponent {

private VisualComponent wrappee;
Decorator(VisualComponent wrapee) {

this.wrapee = wrappee;
}
public void draw () {

wrappe.draw();
}

}

class ScrollDecorator extends Decorator {
private Position scrollPosition;
ScrollDecorator(VisualComponent wrappee, Position scrollPosition) {

super(wrappee);
this.scrollPosition = scrollPosition;

}
public void draw() {

super.draw();
scrollTo(scrollPosition);

}

Luca Dan Serbanati - Software Design Techniques

139

Virtual Proxy (Surrogate)
Intent

Provide a surrogate or placeholder for another
object to control access to it.

DocumentEditor

Graphic
Draw()
GetExtent()
Store()
Load()

1..*1..*

ImageProxy
fileName
extent

Draw()
GetExtent()
Store()
Load()

Image
imageImp
extent

Draw()
GetExtent()
Store()
Load()

+image

if (image==Null) {
image=LoadImage(fileName);

}
image.Draw();

if (image==Null) {
return extent;

} else {
return image.GetExtent();

}

Virtual Proxy
Subject

Proxy

RealSubject

Exemplu
Consider a document editor that can embed graphical objects in a document. Some graphical
objects, like large raster images, can be expensive to create. But opening a document should be
fast, so we should avoid creating all the expensive objects at once when the document is
opened.
These constraints would suggest creating each expensive object on demand, which in this case
occurs when an image becomes visible. Meantime we can use another object, an image proxy,
that acts as a stand-in for the real image.

The Virtual Proxy pattern hides
from its clients the fact that an
object may not yet exist, by
having them access the object
indirectly through a proxy object
that implements the same
interface as the object that may
not exist.

ImageProxy
The proxy acts just like the image and takes care of instantiating it when it's
required. The image proxy creates the real image only when the document editor
asks it to display itself by invoking its Draw operation.

Luca Dan Serbanati - Software Design Techniques

140

ImageProxy is a class for
images that are created on
demand. It maintains the file
name as a reference to the
image on disk and the file
name is passed as an
argument to the constructor.
ImageProxy also stores
the bounding box of the
image and a reference to
the real Image instance.
This reference won't be
valid until the proxy
instantiates the real
image.

Luca Dan Serbanati - Software Design Techniques

141

Virtual Proxy – Structure

Structure
• Service. A Service class supplies the top-level logic for a service that it provides. When an

instance of it is created, ithis also creates the other objects that it needs (ServiceHelper…).
• Client. A class in this role uses the service provided by the Service class. Client classes never

directly use a Service class. Instead, they use a ServiceProxy class that provides the
functionality of the Service class.

• ServiceProxy. The purpose of the ServiceProxy class is to delay creating instances of the
Service class until they are actually needed. It provides indirection between Client classes
and a Service class. The indirection hides from Client objects the fact that when a
ServiceProxy object is created, the corresponding Service object does not exist and the
Service class may not even have been loaded. A ServiceProxy object is responsible for
creating the corresponding Service object. A ServiceProxy object creates the corresponding
Service object the first time it is asked to perform an operation that requires the existence of
the Service object.

• ServiceIF. A ServiceProxy class creates an instance of the Service class through method calls
that do not require static references to the Service class.

Client

ServiceIF
<<Interface>>

operation1()

ServiceProxy
operation1()

Service
operation1()

operation2() operation2()

operation2()

creates

uses

uses

1..*

ServiceHelper1

ServiceHelper1

uses

uses
*

*

Luca Dan Serbanati - Software Design Techniques

142

Virtual Proxy
public interface ServiceIF {

public void operation1();
public void operation2();
//...

} // interface ServiceIF

import java.lang.reflect.Constructor;
public class ServiceProxy {

private ServiceIF assistant = null;
private String myParam;
public ServiceProxy(String s) {

myParam = s;
} // constructor(String)

private ServiceIF getService() {
if (assistant == null) {

try {
Class clazz=Class.forName(“Service”); // ** 1 **

Constructor constructor;
Class[] formalArgs = new Class [] { String.class };
constructor = clazz.getConstructor(formalArgs); // ** 2 **

Object[] actuals = new Object[] { myParam };
assistant = (ServiceIF)constructor.newInstance(actuals); // ** 3 **

} catch (Exception e) {
} // try
if (assistant == null) { // ** 4 **

throw new RuntimeException();
} // if

} // if
return assistant;

} // getService()

//...
public void operation1() {

getService().operation1();
} // operation1()

public void operation2() {
getService().operation2();

} // operation2()
} // class ServiceProxy

1. Furnizeaza obiectul clasa care reprezinta clasa Service
2. Furnizeaza un obiect constructor pentru crearea obiectului Service.
3. Utilizeaza obiectul constructor.
4. Lanseaza o exceptie dupa esuarea tentativei de creare a unui obiect Service.

Virtual Proxy - Conclusions
Conclusions
• Classes accessed by the rest of a program exclusively through a virtual

proxy are not loaded until they are needed.
• Objects accessed through a virtual proxy are not created until they are

needed.
• Classes that use the proxy do not need to be aware of whether the

Service class is loaded, of whether an instance of it exists, or that the
class

• All classes other than the proxy class must access the services of the
Service class indirectly through the proxy. This is critical. If just one class
accesses the Service class directly, then the Service class will be loaded
before it is needed. This is a quiet sort of bug. It generally affects
performance but not function, so it is hard to track down.

Luca Dan Serbanati - Software Design Techniques

143

Luca Dan Serbanati - Software Design Techniques

144

Some comments on the structural patterns
Adapter and Bridge

Both patterns promotes flexibility by providing an indirect reference to another object.
Both filter requests to this object through an interface different of its. But the intents of the
two patterns are different.

Adapter is committed to resolve the incompatibility between two existing interface. No matter
how interfaces are implemented or are generated as independent. It's just a way of
keeping the possibility that two independent two classes can work together without having
to reimplement any of them.

Bridge is a bridge between an abstraction and its many potential implementations. Provides
an interface letting customers the ability to vary the classes that implements it. In this way
facilitates adding new implementations.

Adapter and Bridge are therefore used in different stages of the life cycle of software
development. An adapter is required at the end of the design when it is discovered
incompatibility of two classes that must work together and offer a solution to avoid
replicating code. In this case switching classes was not originally envisaged. Bridge
instead promotes the idea that an abstraction will have multiple implementations and that
all classes can be developed independently. Therefore Bridge will be applied prior to
initiating design.

Facade and Adapter
Façade may seem an Adapter for a lot of objects, but it is not so because Façade defines

a new interface while Adapter reuses an old one.
Decorator and Composite

Have similar structures as they rely on recursive composition to organize an unlimited
number of objects. Although their intents are different, they are not complementary.

Decorator as used for adding new responsibilities to objects without sub-classifying them.
Avoid subclasses explosion that would result when trying to cover all combinations of
responsibilities in a static mode.

Composite instead engages in structuring classes so that related objects can be treated in a
uniform manner and composed objects are treated as a whole.

Luca Dan Serbanati - Software Design Techniques

145

1.5. Behavioral Patterns
1. Observer

2. Command

3. Strategy

4. Template Method

• The behavioral patterns are patterns that describe the ways
objects and classes interact and divide responsibilities among
themselves.

• They are used to organize, manage, and combine behavior.
• A behavioral pattern abstracts an action you want to take from

the object or class that takes the action.
• By changing the object or class, you can change the algorithm

used, the objects affected, or the behavior, while still retaining
the same basic interface for client classes.

Behavioral Patterns
A behavioral pattern explains how objects interact. It describes how different objects

and classes send messages to each other to make things happen and how the steps
of a task are divided among different objects. Where creational patterns mostly
describe a moment of time (the instant of creation), and structural patterns
describe a more or less static structure, behavioral patterns describe a process or a
flow.

Behavioral class patterns
Behavioral class patterns use inheritance, subclassing, and polymorphism to adjust the

steps taken during a process. Behavioral class patterns focus on changing the exact
algorithm used or task performed depending on circumstances.

Behavioral object patterns
Behavioral object patterns describe how different objects work together to accomplish

a task. Behavioral object patterns accomplish tasks that would be difficult or
impossible to accomplish with single objects. Furthermore, they generally make the
entire flow simpler, more understandable, and more robust than the string-and-
bailing-wire solutions that are built without a clear design in mind.

Luca Dan Serbanati - Software Design Techniques

146

Luca Dan Serbanati - Software Design Techniques

147

Chain of Responsibility - Intent
Intent

It avoids coupling between a sender and a recipient by allowing other objects to carry out
the request. The request is sent to a chain of objects until one of them decides to carry it
out.

Motivation
A security system consists of a number of sensors and a computer that monitors them. For
this, the sensors transmit their status to the computer. It stores the status information,
visualizes the current status and starts the alarm if an emergency is detected. Such a system
must be scalable: it easily adapts to different environments. Each sensor will have its own
object that represents the state of the sensor. For reasons of scalability, these objects are
not stored in any environment, except when they are at the basic level of the hierarchical
organization of the system components: apartment, room, refrigerator, cellar, etc. Each
component of the organization will be represented by an object. In this way, the state of the
sensor placed in a component can be interpreted according to the environment in which the
sensor or component is found. A temperature sensor will behave in a certain way in a room
and in another way in a refrigerator or cellar. Therefore it is not the sensor object that has to
decide how to interpret its state. It will delegate the decision to an object from a higher level
in the hierarchy that knows its context better. This object either decides what to do, or it will
announce an object from a higher level.

:Building

:Piano:Flat
:Piano:Area

:Piano:Room
:Piano:Warehouse

:Piano: Temperature Sensor:Piano:Temperature Sensor

Luca Dan Serbanati - Software Design Techniques

148

Chain of Responsibility - Structure
Aplicability
1. When several objects have to manage a request and the manager is not known in advance.

It will be set dynamically.
2. If it is desired to produce a request for one or more objects without explicitly specifying the

recipient.
3. The set of objects that can handle the request must be specified dynamically.

Structure
Manager - the superclass of all objects
from the chain of objects that can solve
the request.
Defines the interface for request management:

a) the manageRequest() method which must be
redefined by all ConcreteManager subclasses and

b) the sendRequest() method that calls the
method manageRequest() and if the result
of the call is false, send the request to the
successor in the chain.
- implements the link of the successors (optional).

ConcreteManager - Instances are objects in the object chain that can handle the request.
– manages the request for which it is responsible,
– may access successors,
– If ConcreteManager can solve the request, it solves it. Otherwise, it sends it to its

successor.
Client - instances send the request to the first object in a chain of objects that can handle
the request. Use the sendRequest() method for sending.
– Initiates the request of a ConcreteManager object in the chain.

ConcreteManager1
manageRequest() : boolean

ConcreteManager2
manageRequest() : boolean

Client

Manager
sendRequest()
manageRequest() : boolean1

1
+destination

1

+sender 1
send request

1

1

+ predecessor

+successor

1

1

send request to the next manager

Chain of Responsibility

ConcreteManager

Client
Manager

Chain of
Responsibility

Luca Dan Serbanati - Software Design Techniques

149

Structure

Collaborations

Luca Dan Serbanati - Software Design Techniques 150

Chain of Responsibility - Conclusions

Conclusions
1. The model reduces the coupling between the object that sends a request and the one that

will manage it.
2. 2. It introduces a major flexibility in the decision of who manages the request, but does not

guarantee that the request will be satisfied.

Sensor
notify(measurement : int)

Sensor of temperature
notifiy(measurement : int)

Sensor of Smoke
notifiy(measurement : int)

SecurityZone

notify(measurement : int, source : Sensor)
manageNotification(measurement : int,
source : Sensor) : boolean

triggerAllarme(zona : SecurityArea)

Building

manageNotification(measurement: int, source
: Sensor) : boolean

Warehouse

manageNotification(measurement: int, source
: Sensor) : boolean

Flat

manageNotification(measurement: int, source
: Sensor) : boolean

Area

manageNotification(measurement: int,
source : Sensor) : boolean

Room

manageNotification(measurement: int, source
: Sensor) : boolean

Refrigerator

manageNotification(measurement: int, source :
Sensor) : boolean

Mediator
Intent

The mediator pattern is used to define simplified communication between classes. It uses an object that
encapsulates the way several objects interact. The object coordinates the modification of the state of
other objects. In this way, the object promotes weak coupling and increases cohesion, avoiding that the
objects interact directly with each other. That is why the interaction can be diversified, independent of
the objects involved.

Motivation
Let consider organizing a reception. A system is used that offers a dialogue window in which all the
requirements for the reception must be completed:

– a text field "No. persons" for the number of persons,
– three other text fields for date ("Date"), start time ("Ora inizio") and end time ("Ora fine"),
– a group of radio buttons "Type of service" for the type of dinner: at the table or a buffet,
– a list of “Dishes" with available dishes,
– two buttons: "OK" and "Cancel".

The scenario for the operation of the window is:
1. At the beginning, only "No. people" and "Cancel".
2. When entering a number between 10 and 99 in the "No. Persons" the fields "Date", "Start time",

"Finish time" and the group "Type of service" appear only if there is a room big enough for the number
of people. Each change in the number of people deletes the content of the fields viewed.

3. "Start time" < "Fine time".
4. Completing the fields "Date", "Start time" and "End time" and the "Type of service" group, the

"Markets" list is visualized because the list depends on the season and the reception time.
5. After choosing the first course, the "OK" button becomes visible.Another level of connection between

the window components results from the scenario. Each component is involved in at least two
dependencies. It will be difficult to code 15 possible links in the window.
The solution is to use an object that has a single connection with all components and leave the
components separate. The object is called Mediator and encapsulates the logic of the window's
behavior.

Luca Dan Serbanati - Software Design Techniques

151

Mediator (II)
Applicability
1. When a group of objects communicate with each other in a well-defined but complex way.
2. When reusing an object is difficult because the object uses and communicates with other objects.
3. When a behavior distributed in several classes must be customized without using sub-classification.
Structure

EventListener- Interface that allows ColleagueX classes to have several levels of reuse: ColleagueX
classes are not aware that they are working with Mediator. Each interface defines how to work with a
certain type of events. To announce a certain state, ColleagueX calls the method corresponding to the
interface without knowing the class of the Mediator object that implements the method.

Luca Dan Serbanati - Software Design Techniques

152

ColleagueX - Instance that have mutual dependency
due to their condition. These dependencies can be
of two types:
• An object requires the approval of another

object to change its state into a certain way.
• An object must announce other objects after

making a certain type of modification of the
state.

The two dependencies are managed the same way.
ColleagueX instances are associated with a Mediator
object:
• When we want the approval for a changing of

the state calls a method of the Mediator.
• When we want to announce other objects on

another method is called for changing the state
of the Mediator.

EventListener1
<<Interface>>

EventListener2
<<Interface>>

EventListener3
<<Interface>>

Colleague1

addEventListener1(e : EventListener1)

notify status changes

Mediator
registraCollega1(c : Collega1)
registraCollega2(c : Collega2)

manageEvent1()
manageEvent2()

1

1

1

1

propagates changes

Colleague2
addEventListener2(e : EventListener2)
addEventListener3(e : EventListener3)

notify status changes
notify status changes 1

1

propagates changes

1

1. . . .

. . . .
. . . .

Mediator
Colleague

Listener Listener
Mediat
or

Mediator (III)
Mediator - the instances of the class have a logic for processing notifications coming from
ColleagueX objects. The class implements several EventListenerY interfaces. Through these
interfaces the Mediator object is informed about the state change. In the case of a request
to modify the status of one part of the ColleagueX objects, the invoked method approves or
rejects the modification. To announce the state change, the method usually boils down to
propagating the announcement to the other objects.Mediator has
registerColleagueX(ColleagueX) methods that can be called to associate its objects with
ColleagueA objects. The registerColleagueX method passes a ColleagueX object and usually
calls one or more aggEventListenerY() methods to inform the ColleagueX object which in
turn informs the Mediator object of its state change. The mechanism is similar to the event
delegation model in Java.

Implementation
Usually, a single object (frame or dialog) is responsible for the creation of ColleagueX objects
and the Mediator object, which is also their container. In this case, Mediator is an internal
class of this object. This design increases the robustness of the program.
For implementation, it will be decided whether the Mediator is aware of the state of the
ColleagueX objects or must be informed every time it knows the state of the object.In the
first case, the Mediator will have a variable for each ColleagueX object, which when
initializing the creation of the object, this variable is added when the ColleagueX object will
announce a change in status.
In the second case, every time the Mediator object receives a status change announcement
from a ColleagueX, it receives the status of these ColleagueX objects on which its decisions
are based. This approach is just as good, however in the first case, it happens that the
Mediator does not receive the correct state of the ColleagueX objects..

Luca Dan Serbanati - Software Design Techniques

153

Mediator (IV)
Luca Dan Serbanati - Software Design Techniques

154

Structure

Collaborations

Luca Dan Serbanati - Software Design Techniques

155

Observer (I)
Intent:

Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically. Allow
objects to dynamically register dependencies between objects so that an object
will notify those objects that are dependent on it when its state changes.

Motivation
• A common side-effect of partitioning a system into a collection of cooperating

classes is the need to maintain consistency between related objects. You don't
want to achieve consistency by making the classes tightly coupled, because that
reduces their reusability.

• For example, many graphical user interface toolkits separate the presentational
aspects of the user interface from the underlying application data. Classes defining
application data and presentations can be reused independently. They can work
together, too.

• The Observer pattern describes how to establish these relationships. The key
objects in this pattern are subject and observer. A subject may have any number of
dependent observers. All observers are notified whenever the subject undergoes a
change in state. In response, each observer will query the subject to synchronize its
state with the subject's state.

• This kind of interaction is also known as publish-subscribe. The subject is the
publisher of notifications. It sends out these notifications without having to know
who its observers are. Any number of observers can subscribe to receive
notifications.

M
E

Observer

Luca Dan Serbanati - Software Design Techniques

156

Observer (II)
Structure
Subject
• knows its observers.Any number of Observer objects may observe a subject
• provides an interface for attaching and detaching Observer objects.
Observer
• defines an updating interface for objects that should be notified of changes in a

subject.
ConcreteSubject
• stores state of interest to ConcreteObserver objects.
• sends a notification to its observers when its state changes.
ConcreteObserver
• maintains a reference to a ConcreteSubject object.
• stores state that should stay consistent with the subject's.
• implements the Observer updating interface to keep its state consistent with the

subject's.

M
E

Observer

Observer
Luca Dan Serbanati - Software Design Techniques

157

Structure

Collaborations

M
E

Observer

Luca Dan Serbanati - Software Design Techniques

158

Observer (III)
Applicability
1. When an abstraction has two aspects, one dependent on the other. Encapsulating

these aspects in separate objects lets you vary and reuse them independently.
2. When a change to one object requires changing others, and you don't know how

many objects need to be changed.
3. When an object should be able to notify other objects without making

assumptions about who these objects are. In other words, you don't want these
objects tightly coupled.

Observer

update()

Subject

attach(obs : Observer) : void
detach(obs : Observer) : void
notify() : void

0..*0..*

+observers

ConcreteSubject
subjectState : SubjectState

getState() : SubjectState
setState(state : SubjectState) : void

ConcreteObserver
observerState : ObserverState

update() : void

+subject

for all o in observers {
o->update()

}

return subjectState observerState =
subject->getState()

M
E

Observer

Luca Dan Serbanati - Software Design Techniques

159

Observer (III)

Collaborations:
1. ConcreteObserver may set the state of ConcreteSubject
2. ConcreteSubject notifies its observers whenever a change occurs that could make

its observers' state inconsistent with its own.
3. After being informed of a change in the concrete subject, a ConcreteObserver

object may query the subject for information. ConcreteObserver uses this
information to reconcile its state with that of the subject.

The Observer object that initiates the change request postpones its update until it gets
a notification from the subject. Notify is not always called by the subject. It can be
called by an observer or by another kind of object entirely.

aConcreteObserver
: ConcreteObserver

anotherConcreteObserver :
ConcreteObserver

aConcreteSubject: :
ConcreteSubject

setState(SubjectState)

notify()

update()
getState()

update()
getState()

M
E

Observer

Luca Dan Serbanati - Software Design Techniques

160

Observer (IV)Consequencies
• Abstract coupling between Subject and Observer. A subject knows that it has a list

of observers, each conforming to the simple interface of the abstract Observer
class. The subject doesn't know the concrete class of any observer. Thus the
coupling between subjects and observers is abstract and minimal. Because Subject
and Observer aren't tightly coupled, they can belong to different layers of
abstraction in a system. A lower-level subject can communicate and inform a
higher-level observer, thereby keeping the system's layering intact. If Subject and
Observer are lumped together, then the resulting object must either span two
layers (and violate the layering), or it must be forced to live in one layer or the
other (which might compromise the layering abstraction).

• Support for broadcast communication. Unlike an ordinary request, the notification
that a subject sends needn't specify its receiver. The notification is broadcast
automatically to all interested objects that subscribed to it. The subject doesn't
care how many interested objects exist; its only responsibility is to notify its
observers. This gives you the freedom to add and remove observers at any time.
It's up to the observer to handle or ignore a notification.

• Unexpected updates. Because observers have no knowledge of each other's
presence, they can be blind to the ultimate cost of changing the subject. A
seemingly innocuous operation on the subject may cause a cascade of updates to
observers and their dependent objects.

M
E

Observer

Luca Dan Serbanati - Software Design Techniques

161

Observer (V)Motivation
• Suppose that you are working for a company that manufactures smoke detectors,

motion sensors, and other security devices. To take advantage of new market
opportunities, your company plans to introduce a new line of devices. These
devices will be able to send a signal to a security card that can be installed in most
computers. The hope is that companies that make security-monitoring systems will
integrate these devices and cards with their systems. To make it easy to integrate
the cards with monitoring systems, you have been given the task of creating an
easy-to-use API.

• The API must allow your future customers to easily integrate their programs with it
so their programs will receive notifications from the security card. It must work
without forcing the customers to alter the architecture of their existing software.
All that the API may assume about the customer’s software is that at least one, and
possibly more than one, object will have a method that should be called when a
notification is received from a security device.

SecurityObserver
<<Interface>>

ALARM : int = 1 {frozen}
LOW_POWER : int = 2 {frozen}
DIAGNOSTIC : int = 3 {frozen}

notify(device : int, event : int)

SecurityNotifier
addObserver()
removeObserver() 0..*0..*

notifies

SecurityClientSecurityMonitor SecurityAdapter
notifies

M
E

Observer

Luca Dan Serbanati - Software Design Techniques

162

Observer (VI)
Solution

Instances of the SecurityNotifier class receive notifications from the security card.
They, in turn, notify objects that previously requested to receive notifications. Only
objects that implement the SecurityObserver interface can be registered with a
SecurityNotifier object to receive notifications from it. A SecurityObserver object
becomes registered to receive notifications from a SecurityNotifier object when it
is passed to the SecurityNotifier object’s addObserver method. Passing it to the
Security Notifier object’s removeObserver method ends the SecurityObserver
object’s registration to receive notifications.
A SecurityNotifier object passes a notification to a SecurityObserver object by
calling its notify method. The parameters it passes to its notify method are a
number that uniquely identifies the security device that the original notification
came from and a number that specifies the type of notification.

Java API Usage
Java’s delegation event model is a specialized form of the Observer pattern. Classes

whose instances can be event sources participate in the Observable role. Event
listener interfaces participate in the ObserverIF role. Classes that implement event
listener interfaces participate in the Observer role. Because there are a number of
classes that deliver various subclasses of java.awt.AwtEvent to their listeners, there
is a Multicaster class that they use called java.awt.AWTEventMulticaster.

M
E

Observer

Luca Dan Serbanati - Software Design Techniques

163

Observer(VII)

Structure
ObserverIF. An interface in this role defines a method that is typically called notify
or update. An Observable object calls the method to provide a notification that its
state has changed, passing it whatever arguments are appropriate. In many cases, a
reference to the Observable object is one of the arguments that allow the method
to know what object provided the notification.

Observer
update()

Observable

Multicaster
addObserver(ObserverIF)
removeObserver(ObserverIF)
notify()

registra observers
notifica

ObservableIF
<<Interface>>

addObserver(ObserverIF)
removeObserver(ObserverIF)

ObserverIF
<<Interface>>

update()
0..*0..*

notifica

0..*0..*

si registra per ricevere notifiche

M
E

Observer

Luca Dan Serbanati - Software Design Techniques

164

Observer(VIII)
Structure (cont.d)
• Observer. Instances of classes in this role implement the ObserverIF interface and

receive state change notifications from Observable objects.
• ObservableIF. Observable objects implement an interface in this role. The

interface defines two methods that allow Observer objects to register and
unregister to receive notifications.

• Observable. A class in this role implements the ObservableIF interface. Its
instances are responsible for managing the registration of ObserverIF objects that
want to receive notifications of state changes. Its instances are also responsible for
delivering the notifications. The Observable class does not directly implement
these responsibilities. Instead, it delegates these responsibilities to a Multicaster
object.

• Multicaster. Instances of a class in this role manage registration of ObserverIF
objects and deliver notifications to them on behalf of an Observable object. The
purpose of this role is to increase reuse of code. Delegating these responsibilities to
a Multicaster class allows their implementation to be reused by all Observable
classes that implement the same ObservableIF interface or deliver notifications to
objects that implement the same ObserverIF interface.

M
E

Observer

Luca Dan Serbanati - Software Design Techniques

165

Observer (IX)
Collaborations
1. Objects that implement an ObserverIF interface are passed to the addObserver

method of an ObservableIF object.
1.1 The ObservableIF object delegates the addObserver call to its associated

Multicaster object. The Multicaster object adds the ObservableIF object to the
collection of ObserverIF objects that it maintains.

2. The ObservableIF object labeled o needs to notify other objects that its state has
changed. It initiates the notification by calling the notify method of its associated
Multicaster object.

2.1 The Multicaster object calls the notify method of each one of the ObserverIF
objects in its collection.

An Observable object normally passes a self-reference as a parameter to an Observer
object’s notify method. In most cases, the Observer object needs access to the
Observable object’s attributes in order to act on the notification. Here are some
ways to provide that access:

Client : ObservableIF : Multicaster
1: addObserver(ObserverIF) 1.1: addObserver(ObserverIF)

o :
ObservableIF

: Multicaster

1.2: notify() 1.3: notify()

: ObserverIF

M
E

Observer

Luca Dan Serbanati - Software Design Techniques

166

Observer (X)
1. Add methods to the ObservableIF interface for fetching attribute values. This is

usually the best solution. However, it works only if all the classes that implement
the ObservableIF interface have a common set of attributes sufficient for Observer
objects to act on notifications.

2. You can have multiple ObservableIF interfaces, with each providing access to
enough attributes for an Observer object to act on notifications. To make that
work, ObserverIF interfaces must declare a version of their notify method for each
one of the ObservableIF interfaces. However, requiring observer objects to be
aware of multiple interfaces removes much of the original motivation for having
ObservableIF interfaces. Requiring a class to be aware of multiple interfaces is not
much better than requiring it to be aware of multiple classes, so this is not a very
good solution.

3. You can pass attributes that ObserverIF objects need as parameters to their notify
methods. The main disadvantage of this solution is that it requires Observable
objects to know enough about ObserverIF objects to provide them with the correct
attribute values. If the set of attributes required by ObserverIF objects changes,
then you must modify all of the Observable classes accordingly.

4. You can dispense with the ObservableIF interface and pass the Observable objects
to ObserverIF objects as instances of their actual class. This implies overloading the
ObserverIF interface’s notify method, so that there is a notify method for each
Observable class that will deliver notifications to ObserverIF objects.

Command (I)Intent
- Encapsulate commands in objects so that you can control their selection and

sequencing, queue them, undo them, and otherwise manipulate them.
- An object is used to represent and encapsulate all the information needed to call a

method at a later time. This information includes the method name, the object
that owns the method and values for the method parameters.

Motivation (I)
Suppose you want to design a word processing program so that it can undo and
redo commands. A way to accomplish this is to materialize each command as an
object with do and undo methods.

Luca Dan Serbanati - Software Design Techniques

167

Command

Luca Dan Serbanati - Software Design Techniques

168

Structure

Collaborations

Command (II)
1. When you tell the word processor to do something, instead of directly performing

the command, it creates an instance of the subclass of AbstractCommand
corresponding to the command. It passes all necessary information to the
instance’s constructor.

2. Once the word processor has materialized a command as an object, it calls the
object’s doIt method to execute the command.

3. The word processor also puts the command object in a data structure that allows
the word processor to maintain a history of the commands that have been
executed. Maintaining a command history allows the word processor to undo
commands in the reverse order that they were issued by calling their undo
methods.

Luca Dan Serbanati - Software Design Techniques

169

Luca Dan Serbanati - Software Design Techniques

170

Command (III)
Motivation (II)
• User interface toolkits include objects like buttons and menus that carry out a

request in response to user input. But the toolkit can't implement the request
explicitly in the button or menu, because only applications that use the toolkit
know what should be done on which object. As toolkit designers we have no way of
knowing the receiver of the request or the operations that will carry it out.

• The Command pattern lets toolkit objects make requests of unspecified application
objects by turning the request itself into an object. This object can be stored and
passed around like other objects. The key to this pattern is an abstract Command
class, which declares an interface for executing operations. In the simplest form this
interface includes an abstract execute operation. Concrete Command subclasses
specify a receiver-action pair by storing the receiver as an instance variable and by
implementing execute to invoke the request. The receiver has the knowledge
required to carry out the request.

Luca Dan Serbanati - Software Design Techniques

171

Command (IV)
• Menus can be implemented easily with Command objects. Each choice in a Menu is

an instance of a MenuItem class.
• Consider a word processor where an Application class creates the menus and their

menu items along with the rest of the user interface. Application also keeps track
of Document objects that a user has opened.

• The application configures each MenuItem with an instance of a concrete
Command subclass. When the user selects a MenuItem, the MenuItem calls
execute on its command, and execute carries out the operation. MenuItems
don't know which subclass of Command they use. Command subclasses store the
receiver of the request and invoke one or more operations on the receiver.

Command1
execute()

command.execute()
Document

open()
close()
cut()
copy()
paste()

Application
add(Document)

0..*0..*

Menu
add(MenuItem)

0..*0..*

Command
execute()

MenuItem
clicked()

0..*0..*

Comm
and

Comm
and

ConcreteCo
mmand

InvokerReceiv
er

Client

command

Luca Dan Serbanati - Software Design Techniques

172

Command - Motivation
• In each of these examples, notice how the Command pattern decouples the object

that invokes the operation from the one having the knowledge to perform it. This
gives us a lot of flexibility in designing our user interface.
– For instance, an application can provide both a menu and a push button

interface to a feature just by making the menu and the push button share an
instance of the same concrete Command subclass.

– We can replace commands dynamically, which would be useful for
implementing context-sensitive menus.

– We can also support command scripting by composing commands into larger
ones.

• All of this is possible because the object that issues a request only needs to know
how to issue it; it doesn't need to know how the request will be carried out.

Applicability
Use the Command pattern when you want to:
• parameterize objects by an action to perform, as MenuItem objects. You can

express such parameterization in a procedural language with a callback function,
that is, a function that's registered somewhere to be called at a later point.
Commands are an object-oriented replacement for callbacks.

• have a more versatile and sofisticated reference to an object than a simple
identifier.

Luca Dan Serbanati - Software Design Techniques

173

Command - Applicability
• specify, queue, and execute requests at different times. A Command object can have

a lifetime independent of the original request. If the receiver of a request can be
represented in an address space-independent way, then you can transfer a
command object for the request to a different process and fulfill the request there.

• support undo. The Command's execute operation can store state for reversing its
effects in the command itself. The Command interface must have an added
Unexecute operation that reverses the effects of a previous call to Execute.
Executed commands are stored in a history list. Unlimited-level undo and redo is
achieved by traversing this list backwards and forwards calling Unexecute and
Execute, respectively.

• support logging changes so that they can be reapplied in case of a system crash. By
augmenting the Command interface with load and store operations, you can keep a
persistent log of changes. Recovering from a crash involves reloading logged
commands from disk and reexecuting them with the Execute operation.

• structure a system around high-level operations built on primitives operations. Such
a structure is common in information systems that support transactions. A
transaction encapsulates a set of changes to data. The Command pattern offers a
way to model transactions. Commands have a common interface, letting you
invoke all transactions the same way. The pattern also makes it easy to extend the
system with new transactions.

Luca Dan Serbanati - Software Design Techniques

174

Command - Structure

Structure
• Command

– declares an interface for executing an operation.
• ConcreteCommand (PasteCommand, OpenCommand)

– defines a binding between a Receiver object and an action
– implements Execute by invoking the corresponding operation(s) on Receiver.

• Client (Application)
– creates a ConcreteCommand object and sets its receiver.

• Invoker (MenuItem)
– asks the command to carry out the request.

• Receiver (Document, Application)
– knows how to perform the operations associated with carrying out a request.

Any class may serve as a Receiver.

Client

ConcreteCommand

state

execute()

Receiver

action()

+receiver

Command

execute()
Invoker

receiver.action()

creates

Luca Dan Serbanati - Software Design Techniques

175

Command - Collaborations
Collaborations
• The client creates a ConcreteCommand object and specifies its receiver.
• An Invoker object stores the ConcreteCommand object.
• The invoker issues a request by calling Execute on the command. When commands

are undoable, ConcreteCommand stores state for undoing the command prior to
invoking Execute.

• The ConcreteCommand object invokes operations on its receiver to carry out the
request.

aClient:
Client

aCommand :
Command

anInvoker
: Invoker

new Command(aReceiver)

storeCommand(aCommand)

action()
execute()

aReceiver
: Receiver

Luca Dan Serbanati - Software Design Techniques

176

Command - Applicability
Consequences
• Command decouples the object that invokes the operation from the one that

knows how to perform it.
• Commands are first-class objects. They can be manipulated and extended like any

other object.
• You can assemble commands into a composite command. An example is the

MacroCommand class described earlier. In general, a composite command is an
instance of the Composite pattern.

• It's easy to add new Commands, because you don't have to change existing classes.
Implementation
Consider the following issues when implementing the Command pattern:
• How intelligent should a command be? A command can have a wide range of

abilities. At one extreme it merely defines a binding between a receiver and the
actions that carry out the request. At the other extreme it implements everything
itself without delegating to a receiver at all. The latter extreme is useful when you
want to define commands that are independent of existing classes, when no
suitable receiver exists, or when a command knows its receiver implicitly. For
example, a command that creates another application window may be just as
capable of creating the window as any other object. Somewhere in between these
extremes are commands that have enough knowledge to find their receiver
dynamically.

Luca Dan Serbanati - Software Design Techniques

177

Command - Implementation
• Supporting undo and redo. Commands can support undo and redo capabilities. A

ConcreteCommand class might need to store additional state to do so. This state
can include
– the Receiver object, which actually carries out operations in response to the

request,
– the arguments to the operation performed on the receiver, and
– any original values in the receiver that can change as a result of handling the

request.
The receiver must provide operations that let the command return the receiver to
its prior state.

• To support one level of undo, an application needs to store only the command that
was executed last. For multiple-level undo and redo, the application needs a
history list of commands that have been executed, where the maximum length of
the list determines the number of undo/redo levels. The history list stores
sequences of commands that have been executed. Traversing backward through
the list and reverse-executing commands cancels their effect; traversing forward
and executing commands reexecutes them.

Luca Dan Serbanati - Software Design Techniques

178

Command - Implementation
• An undoable command might have to be copied before it can be placed on the

history list. That's because the command object that carried out the original
request, say, from a MenuItem, will perform other requests at later times. Copying
is required to distinguish different invocations of the same command if its state can
vary across invocations.

• For example, a DeleteCommand that deletes selected objects must store different
sets of objects each time it's executed. Therefore the DeleteCommand object must
be copied following execution, and the copy is placed on the history list. If the
command's state never changes on execution, then copying is not required—only a
reference to the command need be placed on the history list. Commands that must
be copied before being placed on the history list act as prototypes.

• Avoiding error accumulation in the undo process. Hysteresis can be a problem in
ensuring a reliable, semantics-preserving undo/redo mechanism. Errors can
accumulate as commands are executed, unexecuted, and reexecuted repeatedly so
that an application's state eventually diverges from original values. It may be
necessary therefore to store more information in the command to ensure that
objects are restored to their original state.

Luca Dan Serbanati - Software Design Techniques

179

Command - Undo/Redo Sample

: Invoker command :Concrete
Command

: Command
Manager

create(doc:Document, pos:int, s:String)

invokeCommand(Command)

ok=doIt()

[ok]: addToHistory(command)

The example of commands in
a word processor that can be
undone and redone.
CommandManager is
responsible with the
management of a collection
of commands created by the
Invoker. The responsability of
the CommandManager is not
only to manage undo and
redo commands, but also to
order commands execution
when a command should be
executed.

Invoker

ConcreteCommand
doIt()
undoIt()

creates_and_invokes

+invokee

+creator/invoker

Command
doIt()
undoIt()

CommandManager

1..1
0..*

1..1
0..*

UndoCommand
doIt()
undoIt()

RedoCommand
doIt()
undoIt()

Redo
<<interface>>

Undo
<<interface>>

Luca Dan Serbanati -
Software Design Techniques

180

Command - Code
public abstract class AbstractCommand {

public final static CommandManager manager = new
CommandManager();

public abstract boolean doIt();
public abstract boolean undoIt();

} // class AbstractCommand
/* Comando concreto. */

class ConcreteCommand extends AbstractCommand {
private Document document;
private String strng;
private int position;
ConcreteCommand(Document doc, int pos, String s) {

this.document = doc;
this.position = pos;
this.strng = s;
manager.invokeCommand(this);

} // Constructor(Document, int, String)
public boolean doIt() {

try {
document.insertStringCommand(position, strng);

} catch (Exception e) {
return false;

} // try
return true;

} // doIt()
public boolean undoIt() {

try {
document.deleteCommand(position, strng.length());

} catch (Exception e) {
return false;

} // try
return true;

} // undoIt()
} // class ConcreteCommand
interface UnDo {
} // interface Undo
class UndoCommand implements Undo {

public boolean doIt() {
throw new NoSuchMethodError();

} // doIt()
public boolean undoIt() {

throw new NoSuchMethodError();
} // undoIt()

} // UndoCommand

import java.util.LinkedList;
class CommandManager {

private int maxHistoryLength = 100;
private LinkedList history = new LinkedList();
private LinkedList redoList = new LinkedList();
public void invokeCommand(AbstractCommand command) {

if (command instanceof UndoCommand) {// se implementa Undo
undo();
return;

} // if undo
if (command instanceof RedoCommand) { //se implementa Redo

redo();
return;

} // if redo
if (command.doIt()) {

addToHistory(command);
} else { // command cannot be undone

history.clear();
} // if
if (redoList.size() > 0)

redoList.clear();
} // invokeCommand(AbstractCommand)
private void undo() {

if (history.size() > 0) {
AbstractCommand undoCommand;
undoCommand = (AbstractCommand)history.removeFirst();
undoCommand.undoIt();
redoList.addFirst(undoCommand);

} // if
} // undo()
private void redo() {

if (redoList.size() > 0) {
AbstractCommand redoCommand;
redoCommand = (AbstractCommand)redoList.removeFirst();
redoCommand.doIt();
history.addFirst(redoCommand);

} // if
} // redo()
private void addToHistory(AbstractCommand command) {

history.addFirst(command);
if (history.size() > maxHistoryLength)

history.removeLast();
} // addToHistory(AbstractCommand)

} // class CommandManager

C
D

Command

Luca Dan Serbanati - Software Design Techniques

181

Strategy - Motivation
Intent

Encapsulate related algorithms in classes that implement a common interface. This allows
the selection of algorithm to vary by object. It also allows the selection of algorithm to vary
over time.

Motivation
Suppose you have to write a program that displays calendars. One of the requirements for
the program is that it be able to display sets of holidays celebrated by different nations and
different religious groups. The user must be able to specify which sets of holidays to display.
You would like to satisfy the requirement by putting the logic for each set of holidays in a
separate class. This will give you a set of small classes to which you could easily add more
classes. You want classes that use these holiday classes to be unaware of any specific set of
holidays.

Strategy (II)
• If a Calendar Display object has a HolidaySetIF object to work with, it consults with

that object about each day it displays, in order to find out if that day is a holiday.
Such objects are either an instance of a class like USHoliday that identifies a single
set of dates or they are an instance of CompositeHoliday. The CompositeHoliday
class is used when the user requests the display of multiple sets of holidays. It is
instantiated by passing an array of Holiday objects to its constructor.

• This arrangement allows a CalendarDisplay object to find out what holidays fall on
a particular date by just calling a HolidaySetIF object’s getHolidays method.

Applicability
• A program must provide multiple variations of an algorithm or behavior.
• You need to vary the behavior of each instance of a class.
• You need to vary the behavior of objects at runtime.
• Delegating behavior to an interface allows classes that use the behavior to be

unaware of the classes that implement the interface and the behavior.
• If a behavior of a class’s instances does not vary from instance to instance or over

time, then it is simplest for the class to directly contain the behavior or directly
contain a static reference to the behavior.

Luca Dan Serbanati - Software Design Techniques

182

Luca Dan Serbanati - Software Design Techniques

183

Strategy - Structure

Strutura
• Client. A class in the Client role delegates an operation to an interface. It does so without

knowing the actual class of the object it delegates the operation to or how the class
implements the operation.

• StrategyIF. An interface in this role provides a common way to access operations
encapsulated by its subclasses.

• ConcreteStrategy1, ConcreteStrategy2, and so on. Classes in this role provide alternative
implementations of the operation that the client class delegates.

• The Strategy pattern always occurs with a mechanism for determining the actual
ConcreteStrategy object that the client object will use. The selection of a strategy is often
driven by configuration information or events. However, the actual mechanism varies
greatly. For this reason, no particular strategy-selecting mechanism is included in the
pattern.

ConcreteStrategy1 ConcreteStrategy2

Client
StrategyIF

operation()0..11..1

uses

0..11..1

Strategy

Client

ConcreteStrategy

AbstractStrategy

Luca Dan Serbanati -
Software Design Techniques

184

Strategy - Code
import java.util.Date;

public abstract class Holiday {
// constant to indicate there are no holidays
protected final static String[] noHoliday = new String[0];
/* The method returns a n array of strings which describe the

holidays in a given date. Il the date is not holiday the method
returns an array of length 0 */

abstract public String[] getHolidays(Date d) ;
} // class Holiday

import java.util.Date;
class PrintCalendar{

private Holiday holiday;
private static final String[] noHoliday = new String[0];
//...
/*
in this class information on the dates to be displayed is stored.
*/

private class DateCache {
private Date date;
private String[] holidayStrings;

DateCache(Date dt) {
date = dt;
//...
if (holiday == null) {

holidayStrings = noHoliday
} else {

holidayStrings = holiday.getHolidays(data);
} // if
//...

} // construttore(Date)
} // class DateCache

} // class PrintCalendar

import java.util.Date;
/* This class determines if the date is a holiday for a combination of

caledars . */
public class CompositeHoliday extends Holiday {

private Holiday[] arrayHolidays;

public CompositeHoliday (Holidays[] h) {
arrayHolidays= new Holiday[h.length];
System.arraycopy(f, 0, arrayHolidays, 0, h.length);

} // CompositeHoliday

public String[] getHolidays(Date dt) {
return getHolidays0(dt, 0, 0);

} // getHolidays(Date)

private String[] getHolidays0(Date dt, int offset, int ndx) {
if (ndx >= arrayHoliday.length) {

return new String[offset];
} // if
String[] holidays= arrayHolidays[ndx].getHolidays(dt);
String[] result = getHolidays0(dt, offset+holidays.length, ndx+1);
System.arraycopy(holidays, 0, result, offset, holidays.length);
return result;

} // getHolidays0(Date, int, int)
} // class CompositeHoliday

import java.util.Date;
public class HolidayRomania extends Holiday{

public String[] getHolidays(Date dt) {
String[] holidays = noHoliday;
//...
return holidays;

} // getHolidays(Date)
} // class HolidayRomania

Luca Dan Serbanati - Software Design Techniques

185

Template Method - IntentIntent
Include an abstract class that contains only part of the logic needed to accomplish its

purpose. Organize the class so that its concrete methods call an abstract method
where the missing logic would have appeared. Provide the missing logic in the
subclass’s methods that override the abstract methods. In other words, define the
skeleton of an algorithm in an operation, deferring some steps to subclasses.
Template Method lets subclasses redefine certain steps of an algorithm without
changing the algorithm's structure.

Motivation
• Consider an application framework that provides Application and Document

classes. The Application class is responsible for opening existing documents stored
in an external format, such as a file. A Document object represents the information
in a document once it's read from the file.

• Applications built with the framework can subclass Application and Document to
suit specific needs. For example, a drawing application defines DrawApplication
and DrawDocument subclasses; a spreadsheet application defines
SpreadsheetApplication and SpreadsheetDocument subclasses.

• The abstract Application class defines the algorithm for opening and reading a
document in its OpenDocument operation.

• OpenDocument defines each step for opening a document. It checks if the
document can be opened, creates the application-specific Document object, adds it
to its set of documents, and reads the Document from a file.

Luca Dan Serbanati - Software Design Techniques

186

Template Method

• We call OpenDocument a template method. A template method defines an
algorithm in terms of abstract operations that subclasses override to provide
concrete behavior. Application subclasses define the steps of the algorithm that
check if the document can be opened (CanOpenDocument) and that create the
Document (DoCreateDocument). Document classes define the step that reads the
document (DoRead). The template method also defines an operation that lets
Application subclasses know when the document is about to be opened
(AboutToOpenDocument), in case they care.

• By defining some of the steps of an algorithm using abstract operations, the
template method fixes their ordering, but it lets Application and Document
subclasses vary those steps to suit their needs.

MyDocument
doRead()

save()
open()
close()
doRead()

void openDocument(String name) {
if (!canOpenDocument(name)) return;

Document doc=doCreateDocument();
if (doc) {

docs.addDocument(doc);
aboutToOpenDocument(doc);

doc.open();
doc.doRead(),

}
}

MyApplication
doCreateDocument()
canOpenDocument():boolean
aboutToOpenDocument()

Document Application
addDocument()
openDocument()
doCreate Document()
canOpenDocument():boolean
aboutToOpenDocument()

*

documents

*

uses
return

new MyDocument();

Luca Dan Serbanati - Software Design Techniques

187

Template Method (III)
Motivation(II)
Suppose that you have the task of writing a reusable class for logging users into an

application or applet. In addition to being reusable and easy to use, the tasks of
the class will be to:

1. Prompt the user for a user ID and password.
2. Authenticate the user ID and password. The result of the authentication operation

should be an object. If the authentication operation produces some information
needed later as proof of authentication, then the object produced by the
authentication operation should encapsulate the information.

3. While the authentication operation is in progress, the user should see a changing
and possibly animated display that tells the user that authentication is in progress
and all is well.

4. Notify the rest of the application or applet that login is complete and make the
object produced by the authentication operation available to the rest of the
application.

• Two of these tasks-prompting the user and assuring the user that authentication is
in progress-are application independent. Though the strings and images displayed
to the user may vary with the application, the underlying logic will always be the
same.

• The other two tasks-authenticating the user and notifying the rest of the
application-are application specific. Every application or applet will have to provide
its own logic for these tasks.

Luca Dan Serbanati - Software Design Techniques

188

Template Method (IV)
• The way that you organize your Logon class will be a large factor in how easy it is

for developers to use. Delegation is a very flexible mechanism. You could simply
organize a Logon class so that it delegates the tasks of authenticating the user and
notifying the rest of the application. Though this approach gives a programmer a
lot of freedom, it does not help guide a programmer to a correct solution.

• You can achieve a fill-in-the-blanks organization by defining the Logon class to be
an abstract class that defines abstract methods that correspond to the application-
dependent tasks that the programmer must supply code for. To use the Logon class,
a programmer must define a subclass of the Logon class.
Solution: The AbstractLogon class has a method called logon that contains the top-
level logic for the top-level task of logging a user on to a program. It calls the
abstract methods authenticate and notifyAuthentication to perform the program-
specific tasks of authenticating a user and notifying the rest of the program when
the authentication is accomplished.

AbstractLogon
logon()

authenticate(userID : String, password : String) : Object
notifyAuthenticated(autenticatedToken : Object)

.

Logon
authenticate(userID : String, password : String) : Object
notifyAuthenticated(autenticatedToken : Object)

Luca Dan Serbanati - Software Design Techniques

189

Template Method - Applicability
Applicability
The Template Method pattern should be used:
• to implement the invariant parts of an algorithm once and leave it up to subclasses

to implement the behavior that can vary.
• when common behavior among subclasses should be factored and localized in a

common class to avoid code duplication. This is a good example of "refactoring to
generalize“: you first identify the differences in the existing code and then separate
the differences into new operations. Finally, you replace the differing code with a
template method that calls one of these new operations.

• to control subclasses extensions. You can define a template method that calls
"hook" operations (see Consequences) at specific points, thereby permitting
extensions only at those points.

AbstractTemplate
templateMethod()

op1()
op2()

.

ConcreteTemplate
op1()
op2()

Template Method

ConcreteTemplate

AbstractTemplate

Structure
AbstractTemplate. A class in this role has a concrete method
that contains the class’s top-level logic (templateMethod).
This method calls other methods, defined in the
AbstractTemplate class as abstract methods, to invoke lower-
level logic that varies with each subclass of the
AbstractTemplate class.
ConcreteTemplate. A class in this role is a concrete subclass
of an AbstractTemplate class. It overrides the abstract
methods defined by its superclass to provide the logic needed
to complete the logic of the templateMethod method.

Luca Dan Serbanati - Software Design Techniques

190

Template Method
Consequences

A programmer writing a subclass of an AbstractTemplate class is forced to override
those methods that must be overridden to complete the logic of the superclass. A
well-designed template method class has a structure that provides a programmer
with guidance in providing the basic structure of its subclasses.

Implemention
Clasa AbstractTemplate provides the templateMethod() method and some abstract
operations which have to be implemented by subclasses. Such methods are called
hook methods and are named with the –hook suffix.
Sometimes, the subclasses would not implement these operations. It is better to
implement them as no-op operations.

Code Sample
First is the AbstractLogon class. It participates in the Template Method pattern in
the AbstractTemplate role. Its template method is called logon. The logon method
puts up a dialog that prompts the user for a user ID and password. After the user
supplies a user ID and password, the logon method pops up a window telling the
user that authentication is in progress. The window stays up while the logon
method calls the abstract method authenticate to authenticate the user id and
password. If the authentication is successful, it takes down the dialog boxes and
calls the abstract method notifyAuthentication to notify the rest of the program
that the user has been authenticated.

Luca Dan Serbanati - Software Design Techniques

191

Template Method -
Code

public abstract class AbstractLogon {
public void logon(Frame frame, String programName) {

Object authenticationToken;
LogonDialog logonDialog;
logonDialog = new LogonDialog(frame, "Log on to "+programName);
JDialog waitDialog = createWaitDialog(frame);
while(true) {

waitDialog.setVisible(false);
logonDialog.setVisible(true);
waitDialog.setVisible(true);
try {

String userID = logonDialog.getUserID();
String password = logonDialog.getPassword();

authenticationToken = authenticate(userID, password);
break;

} catch (Exception e) {
// Tell user that Authentication failed
JOptionPane.showMessageDialog(frame, e.getMessage(), "Authentication Failure", JOptionPane.ERROR_MESSAGE);

} // try
} // Authentication successful
waitDialog.setVisible(false);
logonDialog.setVisible(false);

notifyAuthentication(authenticationToken);
} // logon() ...

abstract protected Object authenticate(String userID, String password) throws Exception;
abstract protected void notifyAuthentication(Object authToken) ;

} // class AbstractLogon
public class Logon extends AbstractLogon {
...

protected Object authenticate(String userID, String password) throws Exception {
if (userID.equals("abc") && password.equals("123"))
return userID;

throw new Exception("bad userID");
} // authenticate
protected void notifyAuthentication(Object authToken) { ... } // notify(Object)

} // class Logon

Luca Dan Serbanati - Software Design Techniques

192

Comments on Behavioral Patterns
Encapsulation variants

Behavioral Patterns frequently encapsulate an aspect, dividing the functionality: Strategy is
an algorithm, Mediator is a collaboration protocol between objects, Iterator a way of moving
components in an aggregate. These patterns have two types of objects: new objects that
encapsulate the layout and existing objects that use them. The functionality of the new
objects must belong to the existing objects if they are not patterns.
Chain of Responsibility is instead different: it uses an arbitrary number of objects that
already existed in the system.

Objects as arguments
Some behavioral patterns introduce an object that is always used as an argument. Visitor
uses this object for a polymorphic accept() operation on visited objects. Other patterns
(Command) define objects that act like a ball that circulates internally and is invoked later. In
Command the command operation is polymorphic.

Separation of senders from recipients
Command, Mediator and Chain of Responsibility promote a separation between senders and
receivers. Command introduces the separation by means of a Command object that will
represent the coupling between sender (invoker) and recipient (receiver). This fact allows
the use of several recipients with the same sender, which can be easily reused. The recipient
can be used as a parameter in the Command object and with different senders. In these
cases, the sub-classification is used for each sender-recipient link.
Mediator separates the objects forcing them to communicate exclusively through the
Mediator object. It directs the requests to the CollegueX objects and centralizes the
communication. As the interface is fixed, Mediator must implement its own triage scheme to
add flexibility to the pattern: the request can be coded and the arguments packaged so that
CollegueX can receive requests for an unlimited number of operations. But the centralized
triage scheme can be a source of execution insecurity.

HINTS FOR YOUR FIRST PROJECT

Luca Dan Serbanati - Software Design Techniques

193

Hints in the Choice of Your
Design Patterns

Problem: Design an online order food delivery application
driven by the use cases.

Solution: You may choose for each use case, according to
its behavior and functionality, a dominant pattern, or
more inter-related patterns.

For instance:
1. Search restaurant can be modeled using an

Interpreter pattern that defines a grammatical
representation for a language and provides an
interpreter to deal with this grammar In our case, it
should specify the way to interpret expression based
on location, name of restaurant, food items, PIN,
etc.

2. See menus can be modeled using an Iterator pattern
that provides a way to access elements of an
aggregate object sequentially without exposing the
underlying structure of the object.

3. Add food items to order can be easily modeled with
a Builder pattern used to configure and assemble
complex objects. It provides a way to create the
same object from different kinds of objects.

4. Order food and Cancel order can be modeled with
the Command pattern. It wraps the request under
an object that is called Command. That command
object is being passed to invoker object.

5. Finally, Track the order can be modeled with the
Observer pattern that can notify the user for each
change in the state of the pack.

Luca Dan Serbanati - Software Design Techniques

194

Sequence Diagram of a Food Order Delivery
Luca Dan Serbanati - Software Design Techniques

195

END OF THE FIRST PART

Luca Dan Serbanati - Software Design Techniques

196

