SOFTWARE ARCHITECTURES

prof. Luca Dan Serbanati

2020

Luca Dan Serbanati - Software Architectures

Software Design Fundamentals

Design is a key concept for future progress in
software technology

L. D. Serbanati, Integrating Tools for Software Development, Yourdon Computing Series, Prentice Hall, 1992.

Complexity, conformity, changeability, intangibility

* No two software parts are alike
— If they are, they are usually abstracted away into one
« Complexity grows non-linearly with size
— Except perhaps “toy” programs, it is impossible to enumerate all states of
a program
« Conformity. Software is required to conform to its:
— Operating environment
— Hardware
(Often the last is left because it is perceived as most conformable)
« Changeability. Change originates with :
— New applications, users, machines, standards, laws
— Hardware problems
(Software is viewed as infinitely malleable)
« Intangibility. Software is not embedded in space
— Often no constraining physical laws
« No obvious representation.

Luca Dan Serbanati - Software Architectures

What is Design?

Design = Management of Constraints
— Negotiable constraints
— Non-negotiable constraints

« The duty of the designer would be identify those constraints and then try
to find the delicate balance between them by satisfying all the non
negotiable constrains and optimize the negotiable ones.

« “A pile of rocks ceases to be a rock when somebody contemplates it with
the idea of a cathedral in mind.”

« “A designer knows he has achieved perfection not when there is nothing
left to add, but when there is nothing left to take away.”

Luca Dan Serbanati - Software Arcﬁlré S i g n Te C h n i q u e S 5

« Basic conceptual tools
— Separation of concerns
— Abstraction:
* (1) look at details, and abstract “up” to concepts,
* (2) choose concepts, then add detailed substructure, and move
“down”
— Modularity
« Obiject-oriented design is a widely adapted strategy
— QObjects:
« Main abstraction entity in Object-Oriented Design (OOD)
« Encapsulations of state as attributes with functions for accessing and
manipulating that state
* Pros:
— UML modeling notation
— Design patterns
« Cons:
— Provides only
* One level of encapsulation (the object)
* One notion of interface
* One type of explicit connector (procedure call)
« Even message passing is realized via procedure calls
« OO programming language might dictate important design decisions.

Luca Dan Serbanati - Software Architectures

Separation of Concerns

Separation of concerns is the subdivision of a problem into (hopefully)
independent parts.

The difficulties arise when the issues are either actually or apparently
Intertwined.

Separations of concerns frequently involves many tradeoffs
Total independence of concepts may not be possible.

Key example from software architecture: separation of components
(computation) from connectors (interaction)

Luca Dan Serbanati - Software Architectures

Abstraction and its relatives

Abstraction: “The act or process of separating in thought, of considering a

thing independently of its associations; or a substance independently of its

attributes; or an attribute or quality independently of the substance to which
it belongs.”

Reification: “The mental conversion of ... [an] abstract concept into a thing.”

Deduction: “The process of drawing a conclusion from a principle already
known or assumed; spec. in Logic, inference by reasoning from generals to
particulars; opposed to INDUCTION.”

Induction: “The process of inferring a general law or principle from the
observation of particular instances (opposed to DEDUCTION, qg.v.).”

What concepts should be chosen at the outset of a design task?

One technique:

— Search for a “simple machine” that serves as an abstraction of a
potential system that will perform the required task.

— For instance, what kind of simple machine makes a software system
embedded in a fax machine?

« At core, it is basically just a little state machine.

— Simple machines provide a plausible first conception of how an
application might be built.

— Every application domain has its common simple machines.

Luca Dan Serbanati - Software Architectures 8

Design vs. Architecture

« Design is an activity that pervades software development. It is an activity
that creates part of a system’s architecture and many objects in the system.
« Typically, in the traditional Design Phase decisions concern :
— The system’s structure
— ldentification of its primary components
— Their interconnections.
» Architecture denotes the set of principal design decisions about a system
— It implies that not all design decisions are architectural
— How one defines “principal” will depend on what the stakeholders define
as the system goals.
— That is, they do not necessarily impact a system’s architecture
— That is more than just structure
Traditional design phase suggests translating the requirements into algorithms,
SO a programmer can implement them.
Architecture-centric design
— stakeholder issues
— decision about use of Commercial-off-the-shelf (COTS) components
— overarching style and structure
— package and primary class structure
— deployment issues
— post implementation/deployment issues.

Luca Dan Serbanati - Software Architectures 9

Primacy of Design

« Software engineers collect requirements, code, test, integrate, configure,
etc.

« An architecture-centric approach to software engineering places an
emphasis on design.

— Design pervades the engineering activity from the very beginning
« But how do we approach the task of architectural design?
Software Architect
« A distinctive role and character in a project
« Very broad training
« Amasses and leverages extensive experience
« A keen sense of aesthetics
« Deep understanding of the domain:
— Properties of structures, materials, and environments
— Customers’ needs .

« Even first-rate programming skills are insufficient for the creation of complex
software applications

— But are they even necessary?

Luca Dan Serbanati - Software Architectures

Enterprise
Application
Macro Level
Micro Level
Objects

Levels of Design

Enterprise-wide Architecture
Architecture styles
Frameworks
Design-Patterns

OO Programming

10

Luca Dan Serbanati - Software Architectures ;x:‘:l'::“ To the envirgnment

The Design == L e

| Prepare the Reportthe | | step
- step réasult ¢
! "
] i
Process e Foact
[]
1 Decide to !
i | Preparethe | No release the |

! iteration # [

1. Each step in the program design : _f_' ______________________]

. . . . level
is iteratively accomplished. %W
2. To choose or refine a model, we From the other steps
. . and iterations
may need information from | X
previous iterations or even other Conver | o i
steps in the design process. il T [l g dﬁ:ﬁp&:ﬁ
. . . internal 1 T ascription
3. There are two decision points in form | 5
the design schema for each AL 3 fafne | %1
iteration. 3 e B E
H change - E . H
: : : Modify :
» ﬁ ' : maodel g
E_.--::: Evaluate : : S ""."_ﬂ!‘!‘.if-a:
% :—‘-i‘,-h- differences L T R LT L CEL :
o oK gl DO
e habaondl o e e O D B0

Product requirements
and environment constraints

Luca Dan Serbanati - Software Architectures

Model-Driven Design Process

?

1. Choose a simple
schema to be the first
model of the future
system

|

2. Validate the model
—>| against the design target

[The model is

[The model is n
satisfactory]

3. Refine the model

4. Describe the model
in a design
specification language

|

5. Use the model to
implement the
system

®

12

Luca Dan Serbanati - Software Architectures 13

Modeling Software Design

« From early concept verbalization to a detailed description of the product,
ready for manufacturing, from the first product version through more and
more improved versions, adapted to a given application, the design is a
continuous process that gradually changes the emphasis from the concept,
through the architecture, to the detailed description of a new product or a
change in an existing one.

« The design process includes the following characteristics:

1. A service: |t is a subtask for another, more general process.

2. Goal-oriented.

3. Constructive: Over some existing assumptions it builds new assumptions
strongly related to the previous ones.

4. Inherently iterative: the designer repeatedly goes back to refine and improve the
future product description until it satisfies the requirements.

5. Creative: It is the result of a mental synthesis process.

6. Closely controlled by successive verifications of the results against the
requirements.

7. Continuously refinement of the model.

8. Multi-view on the product.

9. Paradigmatic: It uses some existing solution patterns.

10. Empirical: Originating in or based on observation or experience .

11. Multi-solution.

12. Approximate: The initial requirements are obviously fuzzy and incomplete.

Luca Dan Serbanati - Software Architectures

Sample UP Artifact Relationships

Domain
Business Modgal
Modeling B i
‘__E'?,{:.
- Supplementary
Require- US_EM‘.:ESB Moo Visian Specification Glossary
ments ‘ _‘ [N
The logical architecture is influenced by the - '
constraints and non-functional requirements
captured in the Supp. Spec. e z
4 Design Model
»
package diagrams ul
of the logical
architecture <
(a static view) e =7 Domain
S Tech
~—=—=7 Services
: Register . ProductCatalog
| |
| |
Design interaction diagrams . enteritem :)
(a dynamic view) ~ (itemID, quantity) > :
| spec = getProductSpec(itemiD) |
I :
| |
I |
Ragister ProductCatalog
class diagrams 1 1
(a static view) Ay e
makeNewSale()

enterltem(...)

getProductSpecy...)

14

UP: Design
Models

Business
Modeling

Require:

Inspération for
rigamess ol
SEHTIR

SE ey
doemain
ohgects

BLEFing evants 10

design for. and
detadad posl-
Comgtian o
satisfy

Design

Samphs WP Artilact Relationships

Dorriain Mioded
Sale i q.® Sales
Lireitarm
dake
gLeantity
Use-Case Model
Process Saka
T US|y Cushosner Supplemantary
) nm'? AMaES Emnmmn
g | et
A3 Cashier ™y
| | nbers fam] TP
\ iariiier ; g
mﬂrhr-r funclional reqiirements
Usi Case Diagram Lhse Case Texl requingrmanis)
thal musl be domain rues
ideas for Sy ste realized by
ihe post. evanls the objocts
condilicns
Systam
' Ghoasary
Operation;..... | & Cavher ' '
o mberiami, ..} make i
il | sysiem NewSale{) s
e oarations e E—
Post-conditions " anterttom 4 s
b 'rﬂ-_ warii It a1]
e * foamnats,
Oparation Conbracts Syulem Sequance Disgrams walidation
» » »r
Dasign Madal
1 Fipesier ProduciCatalg Sala
LS : |
; arltam -, : !
'Il .|_ﬂ|.'-"|'l"l|D. 'I',FIEI"HII}?__. B : :
iy RS d = getProductDescription{temiD) | |
addLinaltern{ d, quantity) . .4
Riaghstey ProduciCatalog
- -
iskuhlieita]) gelProductDescsiption],..)

antaribem.... b

UP: Deriving
the Design
Model

Luca Dan Serbanati - Software Architectures 16

From Analysis to Design

By the end of analysis, we had created and tested complete models of the
problem domain. We defined all of the goals and resources that the future
system has to support. These work products represent our target during
analysis. The functionality (use case model), the resources (object model),
and the interaction of the resources to support the functionality (sequence
and/or collaboration diagrams) would exist whether or not we ever provided
automation.

Everything we defined in analysis must remain intact as we move into
design. In fact, the analysis level object model will be the basis for our
database design.

Design is about planning how to accomplish the goals defined in the
analysis work products. The planning process identifies the desired solution,
not the completed solution. Design addresses functionality, as well as
performance, flexibility, and maintainability.

Our design retains the picture of the desired outcome, while the
implementation must conform to the limitations of the current technology and
environment. Technologies and environments change rapidly, presenting
new opportunities to improve the implementation. The design provides a
framework against which to measure these new opportunities and plan for
their introduction into the implementation.

Luca Dan Serbanati - Software Architectures 17

Software Design (l)

« Design adds a “layer” of functionality on top of the analysis models. This
layer is the software that facilitates the use of the problem domain resources
using interfaces, databases, transaction control, and communication that
conforms to the use case model. This layer of technology will likely change

often, but the underlying problem domain will remain relatively stable.
Design Layer

User Interfaces
Transaction Control
Databases
A 4
Use Case Model
Sequence Diagrams
Object Model

Analysis Layer

Luca Dan Serbanati - Software Architectures 18

Software Design (Il)

Design is divided into two steps:

— architectural design and

— object design.
Object design requires a context. Different architectures dictate different low-
level designs. For example, the differences between local and distributed
applications are significant. The challenges of latency, memory access,
partial failures, and concurrency, require significantly different designs for

local solutions than for distributed solutions. Consequently, architectural
choices provide the context for low-level design.

An architecture dictates where each piece of software will reside, how
responsibilities are divided among the software components, and how the
pieces of the architecture communicate.

The architecture divides the solution according to functionality and
technology. Not every function requires the same technological distribution
of responsibilities. The job of the architect is to map functional requirements
and distribute their responsibilities to the technologies best suited to support
goals of the design, for example, performance, maintenance cost, ease of
use, and the like.

Luca Dan Serbanati - Software Architectures

Package Diagram

UML package diagrams are often used to illustrate the logical architecture of

a system, the layers, subsystems, Java packages, etc.

A UML package diagram provides a way to group elements: classes, other

packages, use cases, anything. Nesting packages is very common.

Package

Dependency

Generalization

N

Stereotype

“Contains” and “uses” relationships

<<subsystem>>

global

(from XX)

————————— > (from XX)

subsystem, system .
merge, use, import, access are stereotypes for dependencies.

A UML package represents a namespace.

UiVt standard stereotypes for packages: facade, framework, stuo

19

Luca Dan Serbanati - Software Architectures 20

Stereotypes for Dependencies

1] 1 1 1]
Web Mobile Phone Mail
Shopping Shopping Shopping Shopping

7

| | I |
|| «Merge» I | | | «merges :
| ot e e e e - -
ackage | | I | '
packag | | | I
| €usen | I | wuse»
r—_—_—_—_—_—_—_—_—_—_— __________
|
| | package
| Al merge
| [1 I
|
“LSED €ACCESSH
| Shepping

]—i— — = F'-H'fl'l'lEl'lt ____f-___:} Cart
| , |
usage | private import |
dependency uimpartmlﬂvfw gimports
I I
I I
LV '

public
Customer import Inventory

package

Luca Dan Serbanati — Software Development Methods

Package Diagram - Exemple

| |

| |
OrderCapturing Ul % el - Sl [Hises U
Vv
\/
Order Capturing E-mail
Application Application
V V
I 1

Orders q Clients

. Oracle Interface
\ [~
| |
<<abstract>> []
Dlﬁ%gﬁggg < SQL Server
Interface

21

Nested Package Diagram

Order Capturing Ul AWT E-mail List Ul
= <
Vv
v Email
Order Capturing pplication
Application
‘Q ‘
Domain
— 14
Orders Clients
(from Domain) (from Domain)
<<global>>
Oracle Interface
N2
gb i
<<abstract>> !
Database CubREEEE 1 .
Interface ! SQL Server
b e Interface
22

Luca Dan Serbanati - Software Architectures 23

Object Design

« The context for object level design is the architecture in which the design will
reside. During object design each partition presents a different type of
design challenge. For example, the user interface partition addresses a very
different set of problems from the data access partition. A transaction server
partition is very different from a client application partition.

* Obiject design will use the statechart diagram in addition to all of the tools
that you have used in analysis. Together, these tools provide working
models of every aspect of the software design.

Use Case Model

|

Sequence or

(o mmunication
‘ Diagrams I

Activity
Diagram

‘ Statechart |

Diagram

Domain Madel

Luca Dan Serbanati - Software Architectures

Design Class Diagram

SuperclassFoo
or
SuperClassFoo { abstract }
FO— ‘ + plljblicAmilbute . String
compartments - pnvateAtlr_Muta
assumedPrivateAtiribute

1. classifier name

isinitializedAttribute : Bool = true
aCollection : VeggieBurger [*]

officially in UML, the top format is
used to distinguish the package
name from the class name

unofficially, the second alternative
is common

o java.awt:Font

or
; attributeMayLegallyBeMull : String [0..1] iava.awt.Font
Srabioving finalConstantAttribute : Int= 5 { readOnly } !
3. operations /derivedAttribute plain : Int = 0 { readOnly }
ol mfec = bold : mst =1 { readOnly }
* classQrStaticMeathod() 1 Siri
+ publicMethod() :;rlr;e: Int T}?
= k assumedPublicMethod()
an Inteﬁqce - privateMethod()
shown with a # protectedMethod() :
keyword ~ packageVisibleMethod() getName() - String
i «constructors SuperclassFoo(Long)
f methodWithParms(parm1 : String, parm2 : Float)
& methodReturnaSomething() : VieggieBurger
winterfaces methodThrowsException() {exception |0Exception}
Runnable absfracfﬂde!nod{) B .
abstractMethod2() { abstract } /f alternate A Fruit
runi) finalMethod() { leaf } I no override in subclass dependency [
“—__ synchronizedMethod() { guarded }
AL —
'\.-\\N I] f/f"-_-ﬁ""m (:'-._H_ ‘Jf
interface [N o™ H e
implementation o !
and ta 1
bclassi
subclassing SubclassFoo PurchaseOrder
Q. i
> " order

- ellipsis *..." means there may be elements, but not shown
- & blank compartment officially means “unknown™ but as a
convention will be used to mean “no members”

A

association with ‘
multiplicities

24

Luca Dan Serbanati - Software Architectures 25

Pieces of Advice for Software Architects

1. In software projects you can count on one thing that is constant: CHANGE.
Solution:
— Deal with it.
« Make CHANGE part of your design.
« |dentify what vary and separate from the rest.
Encapsulate what varies.
Program to an interface not to an implementation.
Favor Composition over Inheritance.
Classes should be open for extension but closed for modification.
Don't call us, we’ll call you.
The single responsibility principle: A class should have only one reason to
change.
8. Dependency Inversion Principle: Depend upon abstractions. Do not depend
upon concrete classes.
9. Separate the construction of a complex object from its representation so
that the same construction process can create different representations.
10. Strive for loosely coupled designs between objects that interact.
11. Principle of Least Knowledge: Talk only to your immediate friends.

NOoO O~ WN

Luca Dan Serbanati - Software Architectures

END OF FIRST PART

26

