
Politehnica University
FILS
Prof. Luca Dan Serbanati
Software Design Techniques, IV, 1, 2C, 0S, 1L, 1P, E, 4

Course
description

This course is concerned with the design of complex software systems, that is
the architecture of the overall software product and then the design of objects
that populate the run-time environment. In software systems the building blocks
must be carefully verified and integrated to ensure that the resulting applications
are robust and maintainable. The necessity to integrate, reuse, and maintain
large collections of software components has led to important challenges for
software engineers which, in turn, resulted in the elaboration of various
component models, design patterns, and integration mechanisms.
Design patterns are an other issue of the course. A Design Pattern is a best
practice solution to a reoccurring problem in some context. Design patterns
encapsulate proven, reusable solutions to common design issues. The study of
design patterns can help advance the technical expertise of software
professionals. The course includes design pattern presentation at both
architectural and low levels.
Architecture of software is a collection of design decisions that are expensive to
change. It delineates the structure of the system, showing its major aspects that
need to be understood in order to understand how the system is put together.
In this course the students will acquire the concepts and techniques that will
enable them to understand, analyze, maintain, and improve the architecture of
large software systems.
Several example problems will be studied to investigate the development of
good design decisions at either architectural or object level. Students are
expected to practice their use in modelling, designing, building, and validating
practical, high-quality software systems.

Prerequisite(s)&
Corequisite(s)

• "Software Development Methods" course (including the development of a
non trivial software project)

• In-depth knowledge of UML
• Worthy experience of programming in Java or C++

Textbook(s) and
web materials

1. M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall, 1996, ISBN: 0131829572

2. M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford, Patterns
of Enterprise Application Architecture, Addison-Wesley, 2002

3. P. Kuchana, Software architecture design patterns in Java, Auerbach
Publications, 2004, ISBN 0-8493-2142-5

4. G. Hohpe, B. Woolf, Enterprise Integration Patterns, Addison-Wesley, 2004
5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software , Addison-Wesley, 1995
6. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-

oriented software architecture. A system of patterns, John Wiley&Sons, 1996.
7. http://java.sun.com/j2ee/1.4/docs/tutorial/doc/

Course
objectives

The overall goal of this course is to gain knowledge of software design best
practices. By the end of the semester, students will be able to:
1. describe what is meant software design and describe its reason for existence

in the software life-cycle,
2. understand add apply component coupling and cohesion in an OO design
3. describe the main design patterns,
4. exercise the design patterns,
5. identify which design decisions are expensive to change,
6. describe the main architectural styles,

7. analyze and evaluate architectural qualities,
8. demonstrate a working knowledge of the worth of software reusability,
9. have the academic background to follow current literature in software

patterns.

Topics covered I. Introduction
• Reviewing the main aspects of OOAD and UML (2h)
II. Design Patterns
• Fundamental Patterns: Delegation, Interface, Marker Interface, Proxy (2h)
• Creational Patterns: Factory Method, Builder, Prototype, Singleton (3h)
• Partitioning patterns: Filter, Composite (2h)
• Structural Patterns: Adapter, Façade, Decorator, Iterator, Composite (3h)
• Behavioural Patterns: Command, Observer, Strategy, Template Method (3h)
III. Software Architecture Patterns for Enterprise Applications
• Architecture styles and description languages (4h)
• Layered Architecture (3)
• MVC Pattern (2)
• Enterprise Integration Patterns (4)

Laboratory The practical aspects of the course will involve mostly pattern-oriented solutions
for software reuse.
Laboratory consists of discussion, problem solving, and presentation of
homework solutions. Pre-reading of the lecture notes and class attendance is
essential and students are expected to be prepared and to actively participate in
class activities. There are about 7 assignments, due two weeks after the student
get them. Assignments should be prepared for the next class period. Some may
be collected for grading; others will be reviewed in class.

Project Two projects are assigned during the fall semester. The projects to be
undertaken are one-person projects.
The first one, the mid-term project, analyse and then design an application by
selecting the appropriate design patterns and finally implement it in Java.
The second one, the end-term project, should carry out the architectural design
of a distributed application.
Both projects are a requirement for the competition of the course and will be
graded individually. It is the responsibility of the students to document and give
full details on their contribution to the project.

Grading Grading will be for homework assignment and laboratory participation (20%),
project elaboration (30%) and two exams (partial exam 25% + final exam 25%).
The obtained points will vary depending the design solutions choice, patterns
usage, CASE tools usage, documentation quality, and effort.

Professional
significance

An auxiliary objective of this course is to give the student a working knowledge
of major ideas and concepts of software reusing, largely acknowledged as the
major source of productivity gain in software development. The course provides
students in Computer Science with skills to create high quality software designs
exhibiting improved flexibility, reduced maintenance costs, and with increased
understanding of the resulting code.

