
1

FILS

Course: Compiler Techniques

Homework #7

Type Checking and Intermediate Code Generation

To do type checking a compiler needs to assign a type expression to each component of the source

program. The compiler must then determine that these type expressions conform to a collection of logical

rules that is called the type system for the source language.

Type checking can take on two forms: synthesis and inference. Type synthesis builds up the type of an

expression from the types of its sub-expressions. It requires names to be declared before they are used.

Ex. of synthesis rule:

if f has type s -> t and x has type s, then expression f (x) has type t

Type inference determines the type of a language construct from the way it is used.

Ex. of inference rule:

if f(x) is an expression, then for some α and β, f has type α -> β and x has

type α

The type of an expression E1 op E2 is determined by the operator op and the types of E1 and E2. A coercion

is an implicit type conversion, such as from integer to float.

A declaration specifies the type of a name. The width of a type is the amount of storage needed for a name

with that type. Using widths, the relative address of a name at run time can be computed as an offset from

the start of a data area. The type and relative address of a name are put into the symbol table due to a

declaration, so the translator can subsequently get them when the name appears in an expression.

An intermediate representation is typically some combination of a graphical notation and three-address

code. As in syntax trees, a node in a graphical notation represents a construct; the children of a node

represent its sub-constructs. Three address code takes its name from instructions of the form x := y op z,

with at most one operator per instruction. There are additional instructions for control flow.

Expressions with built-up operations can be unwound into a sequence of individual operations by attaching

actions to each production of the form E:= E1 op E2. The action either creates a node for E with the nodes

for E1 and E2 as children (if the intermediate form is a syntax three), or it generates an instruction in an

intermediate code language (for instance, three-address instructions) that applies op to the addresses for

E1 and E2 and puts the result into a new temporary name, which becomes the address for E.

Exercise 1. Type checking

Below is a grammar used by a calculator of arithmetic expressions involving operator * and integer or

floating-point constant numbers. Floating-point numbers are distinguished by having a decimal point.

The calculated values are assigned to corresponding-as-type variables. The variables are gathered with their

attributes in a symbol table.

L-> L ; S | S

S-> id = E

E-> E * F | F

F -> num.num | num

a) Give an SDD to determine the type of each factor F and expression E and update variables in the symbol

table with type attributes.

b) Extend your SDD of (a) to translate expressions into three-address instructions. Use the unary operator

intToFloat to turn an integer into an equivalent float.

Exercise 2. Type checking

Determine the types and relative addresses for the identifiers in the following sequence of declarations:

float x;

record (float x; float y;) p;

record (int tag; float x; float y;) q;

Exercise 3. Code generation

2

Translate the arithmetic expressions:

a + -(b + c)

a=b[i]+c[j]

a[i]=b*c – b*d

 into:

a) A syntax tree.

b) Quadruples.

c) Triples.

Exercise 4. Code generation

Give the intermediate code generated for the following statements in Java:

if (x<100 || x>200 && x!=y) x=0;

if (a==b && (c==d || e==f)) a=b=c*d + e*f;

repeat x=x+5 until x*x>y;

For all examples, optimize the code by avoiding redundant gotos;

