
FILS

Course: Compiler Techniques

Homework #4

Top‐‐‐‐down Parsing

I. Consider the following grammar, where S is the initial symbol and {a,b,c,d,e} is the set of terminal

symbols:
S -> F c | A c d | λ

F -> b | A c F e

A -> a

1. Examine the grammar and rewrite it so that an LL(1) predictive parser can be built for the

corresponding language.

2. Compute the FIRST and FOLLOW sets for all non‐terminal symbols in the new grammar

3. Build the parse table.

4. Show the parser configuration (stack, input, and actions) for the analysis process of the acbec

input sequence.

II. Consider the following grammar:
A -> A a | A b a | a | A b c A | A b c b | c A | c b

a. Transform it in a top‐down parsable grammar.

b. Calculate the needed FIRST, FOLLOW for building SD sets.

c. Build the LL(1) parse table for it.

d. Parse the input string a b c b a with the aid of a parsing simulation table as in the followings:

STEP STACK INPUT ACTION

1 $A abcba$ A‐>xB

2

III. Programming exercise:

Given the following LL(1) grammar of arithmetic expressions, write a recursive descent parser for this

grammar in Java:
0. Goal −> Expr

1. Expr −> Term Expr’

2. Expr’ −> + Term Expr’

3. | - Term Expr’

4. | λ

5. Term −> Factor Term’

6. Term’ −> * Factor Term’

7. | / Factor Term’

8. | λ

9. Factor −> (Expr)

10. | num

11. | id

Verify the parser using the following two input strings:

(num +id)*id and id – num * id/()

Note. A recursive descent parser is a kind of predictive parser.

Hint.

Given a grammar that has the LL(1) property you can write simple routines to recognize possible structures

for each non‐terminal. The code for such a routine is both simple and fast:

Consider a LL(1) grammar and all A‐productions in this grammar:

 A -> β
ββ

β1 | β
ββ

β2 | β
ββ

β3, with

SD(A->β
ββ

βi) ∩∩∩∩

 SD (A->β
ββ

βj) = ∅
∅∅

∅, with i, j = 1..3, i ≠ j

Write for A a method with the following algorithm:

/* select a non-terminal A */

public boolean A() {

if (current_token ∈ SD(A→β1))

find an input substring β1 and the return true

else if (current_token ∈ SD(A→β2))

find an input substring β2 and return true

else if (current_token ∈ SD(A→β3))

find an input substring β3 and return true

report an error and return false

}

Add a main() method that verifies the parser.

