
Software Architectures

Lab. 2. Homework

Learn by your own the following design patterns: Adapter, Strategy, Chain of Responsibility, and Composite.

Generalities about design patterns

Def1: Reusable solutions to commonly occurring problems.

Def2: OO design patterns are descriptions of communicating objects and classes that are customized to solve a

general design problem in a particular context.

Each pattern has:

· name

· problem – when to apply the problem

· solution – elements that make up the design, relationships, responsibilities and collaborations

· consequences – results and trade-offs of applying the pattern

Reference:

The course lectures: http://www.serbanati.com/poli/Lecture_Notes/ARCH/ARCH_Chap1.pdf

https://www.oodesign.com/

https://medium.com/@ronnieschaniel/object-oriented-design-patterns-explained-using-practical-examples-

84807445b092

https://medium.com/@adeshsrivastava0/decorator-design-patterns-3d6ed6d5aba9

Please, read descriptions for Adapter, Strategy, and Chain of Responsibility from references.

Adapter

Adapter pattern is a structural pattern used to adapt interfaces to clients using different interfaces, sometimes also

transforming the data into appropriate forms. The pattern is adapting between classes and objects. An adapter allows

two incompatible interfaces to work together. Like any adapter in the real world it is used to be an interface, a bridge

between the two objects.

This pattern involves a single class which is responsible to join functionalities of independent or incompatible

interfaces. A real life example could be a case of card reader which acts as an adapter between memory card and a

laptop. You plugin the memory card into card reader and card reader into the laptop so that memory card can be read

via laptop.

The adapter design pattern solves problems like:

• How can a class be reused that does not have an interface that a client requires?

• How can classes that have incompatible interfaces work together?

• How can an alternative interface be provided for a class?

Strategy

The Strategy pattern is a behavioral pattern that enables us to select an algorithm at runtime: a class behavior or its

algorithm can be changed at run time. Instead of implementing a single algorithm directly, code receives run-time

instructions as to which in a family of algorithms to use. In Strategy pattern, we create objects which represent various

strategies and a Context object whose behavior varies as per its strategy object. The strategy object changes the

executing algorithm of the context object. The strategies include a range of algorithms which are distinct from the

actual program and are autonomous (i.e. exchangeable).

In Java framework Strategy pattern is used in Collection framework for sorting. Eg.

Comparator which can be replaced by own implementing classes.

Advantages:

• Helps achieve reusability and flexibility.

• Client class is not complicated by having to use a different interface and can use polymorphism to swap between

different implementations of adapters.

Disadvantages:

• All requests are forwarded, so there is a slight incr

• Sometimes many adaptations are required along an adapter chain to reach the type which is required.

Chain of Responsibility

Chain of responsibility is a behavioral design pattern

request from the client is passed to a chain of objects to process them.

themselves who will be processing the request and whether the request is required to be sent to the ne

the chain or not. It consists of a source of

need of a request to be handled sends it to the chain of handlers which are classes that extend the Handler class.

Each of the handlers in the chain takes its turn at trying to handle the request it receives from the client.

processing object contains logic that defines the types of command objects that it can handle; the rest are passed to

the next processing object in the chain. A mechanism for adding new processing objects to the end of this chain

In a variation of the standard chain-of-responsibility model, some handlers may act as

commands out in a variety of directions, forming a

Composite

1. Sometimes we are dealing with data structures that aggregate in a manner similar to a whole

(tree-structured) but with many exceptions.

2. When dealing with tree-structured data, programmers often have to discriminate between a leaf

branch.

This makes code more complex, and therefore, error pro

and primitive objects uniformly -> Composite pattern

1)

Composite pattern is a partitioning design pattern and describes a group of objects that is treated the same way as a

single instance of the same type of object. The intent of a composite is to “compose” objects into tree structures to

represent part-whole hierarchies.

Composite lets client treat individual objects and compositions of objects uniformly

structure and ask each node in the tree structure to perform a task

In object-oriented programming, a composite is an object designed as a composition of one

all exhibiting similar functionality. This is

The key concept is that you can manipulate a single instance of the object just as you would manipulate a group of

them. The operations you can perform on all the composite objects often have a least common

relationship.

pattern is used in Collection framework for sorting. Eg. sort method has a default

Comparator which can be replaced by own implementing classes.

achieve reusability and flexibility.

Client class is not complicated by having to use a different interface and can use polymorphism to swap between

different implementations of adapters.

All requests are forwarded, so there is a slight increase in the overhead.

Sometimes many adaptations are required along an adapter chain to reach the type which is required.

design pattern that is used to achieve loose coupling in software design where a

request from the client is passed to a chain of objects to process them. Later, the object in the chain will decide

themselves who will be processing the request and whether the request is required to be sent to the ne

source of command objects and a series of processing objects

need of a request to be handled sends it to the chain of handlers which are classes that extend the Handler class.

Each of the handlers in the chain takes its turn at trying to handle the request it receives from the client.

tains logic that defines the types of command objects that it can handle; the rest are passed to

the next processing object in the chain. A mechanism for adding new processing objects to the end of this chain

responsibility model, some handlers may act as dispatchers

commands out in a variety of directions, forming a tree of responsibility.

Sometimes we are dealing with data structures that aggregate in a manner similar to a whole

but with many exceptions.

structured data, programmers often have to discriminate between a leaf

This makes code more complex, and therefore, error prone. The solution is an interface that allows treating complex

Composite pattern.

2)

Composite pattern is a partitioning design pattern and describes a group of objects that is treated the same way as a

single instance of the same type of object. The intent of a composite is to “compose” objects into tree structures to

Composite lets client treat individual objects and compositions of objects uniformly”. It allows you to have a tree

structure and ask each node in the tree structure to perform a task.

oriented programming, a composite is an object designed as a composition of one-

all exhibiting similar functionality. This is known as a “has-a” relationship between objects.

The key concept is that you can manipulate a single instance of the object just as you would manipulate a group of

them. The operations you can perform on all the composite objects often have a least common

method has a default

Client class is not complicated by having to use a different interface and can use polymorphism to swap between

Sometimes many adaptations are required along an adapter chain to reach the type which is required.

e coupling in software design where a

Later, the object in the chain will decide

themselves who will be processing the request and whether the request is required to be sent to the next object in

processing objects. The Client/Sender in

need of a request to be handled sends it to the chain of handlers which are classes that extend the Handler class.

Each of the handlers in the chain takes its turn at trying to handle the request it receives from the client. Each

tains logic that defines the types of command objects that it can handle; the rest are passed to

the next processing object in the chain. A mechanism for adding new processing objects to the end of this chain exists.

dispatchers, capable of sending

Sometimes we are dealing with data structures that aggregate in a manner similar to a whole-part hierarchy

structured data, programmers often have to discriminate between a leaf-node and a

that allows treating complex

Composite pattern is a partitioning design pattern and describes a group of objects that is treated the same way as a

single instance of the same type of object. The intent of a composite is to “compose” objects into tree structures to

It allows you to have a tree

-or-more similar objects,

The key concept is that you can manipulate a single instance of the object just as you would manipulate a group of

them. The operations you can perform on all the composite objects often have a least common denominator

When not to use Composite Design Pattern?

1. Composite Design Pattern makes it harder to restrict the type of components of a composite. So it should not be

used when you don’t want to represent a full or partial hierarchy of objects.

2. Composite Design Pattern can make the design overly general. It makes harder to restr

composite. Sometimes you want a composite to have only certain components. With Composite, you can’t rely on

the type system to enforce those constraints for you.

Adapter

Exercises 1

1a) Suppose you have a Bird class with fly() , and makeSound()methods. And also a ToyDuck class with s

method. Let’s assume that you are short on ToyDuck

Birds have some similar functionality but implement a different interface, so we can’t use them directly. So we will use

adapter pattern. Here our client would be ToyDuck and adaptee would be

Draw the design class diagram, following Adapter design pattern structure.

1b) An audio player device can play mp3

and mp4 files.

Draw the design class diagram, following Adapter design pattern structure.

End of exercise 1

Strategy

Exercise 2

A navigation app should calculate a route

options: Pedestrian, Car, and Public transport. T

calculating routes. Once the user makes a selection and taps on a button, a concrete route is calculated

to the selection. The Navigator class has the

The navigator class has a method for switching the active routing strategy. This means it is possible to switch between

modes of transport via the client buttons.

the client, the service “Calculate the pedestrian route” is requested.

Draw the design class diagram, and the interaction diagram of the scenario that calculates the route using the three

options.

End of exercise 2

Chain of Responsibility

Exercise 3

Use Chain of responsibility pattern to allow a Request to

creating a naive security filter chain that will check the following responsibilities in order:

1. If any endpoint matches the request

o False - return Not Found

2. If the endpoint has any security rules

o False - return Resource

3. If the request contains any authorization he

o False - return Unauthorized request

Design Pattern?

ttern makes it harder to restrict the type of components of a composite. So it should not be

used when you don’t want to represent a full or partial hierarchy of objects.

Composite Design Pattern can make the design overly general. It makes harder to restrict the components of a

composite. Sometimes you want a composite to have only certain components. With Composite, you can’t rely on

the type system to enforce those constraints for you. Instead you’ll have to use run-time checks.

Exercises

Suppose you have a Bird class with fly() , and makeSound()methods. And also a ToyDuck class with s

method. Let’s assume that you are short on ToyDuck objects and you would like to use Bird objects in their place.

Birds have some similar functionality but implement a different interface, so we can’t use them directly. So we will use

adapter pattern. Here our client would be ToyDuck and adaptee would be Bird.

Draw the design class diagram, following Adapter design pattern structure.

mp3 files only and wants to use an advanced audio player capable of playing

the design class diagram, following Adapter design pattern structure.

navigation app should calculate a route based on normal modes of transport. The user can choose between three

Public transport. The graphical user interface (GUI) of the navigation app

calculating routes. Once the user makes a selection and taps on a button, a concrete route is calculated

has the task of calculating and presenting a range of control points on the map.

The navigator class has a method for switching the active routing strategy. This means it is possible to switch between

modes of transport via the client buttons. For example, if the user triggers a command with the

, the service “Calculate the pedestrian route” is requested.

Draw the design class diagram, and the interaction diagram of the scenario that calculates the route using the three

allow a Request to access using the endpoint of a protected Resource

a naive security filter chain that will check the following responsibilities in order:

If any endpoint matches the request

Not Found

If the endpoint has any security rules

Resource

If the request contains any authorization header

Unauthorized request

ttern makes it harder to restrict the type of components of a composite. So it should not be

ict the components of a

composite. Sometimes you want a composite to have only certain components. With Composite, you can’t rely on

time checks.

Suppose you have a Bird class with fly() , and makeSound()methods. And also a ToyDuck class with screech()

objects and you would like to use Bird objects in their place.

Birds have some similar functionality but implement a different interface, so we can’t use them directly. So we will use

files only and wants to use an advanced audio player capable of playing vlc

based on normal modes of transport. The user can choose between three

navigation app has buttons for

calculating routes. Once the user makes a selection and taps on a button, a concrete route is calculated corresponding

task of calculating and presenting a range of control points on the map.

The navigator class has a method for switching the active routing strategy. This means it is possible to switch between

user triggers a command with the pedestrian button of

Draw the design class diagram, and the interaction diagram of the scenario that calculates the route using the three

a protected Resource, by

4. If the authorization is approved

o False - return Invalid authorization

5. return Resource

Draw the design class diagram, and the interaction diagram of the scenario that sets up the chain of handlers when a

request for accessing the Resource arrives.

Hint

You may create a Helper class to handle some conditional logic.

End of exercise 3

Composite

Exercise 4

In a software company, we have several types of employees. So, we have general managers and under general

managers there can be simple managers and under any manager there can be developers.

The Human Resources Division wants to be able to have a uniform access to the information of each employee, for

example her/his salary, regardless of the employee’s position in the company.

Draw the design class diagram, following Composite design pattern structure.

End of exercise 4

