
Software Architectures

Lab. 1. Homework

Learn yourself the following design patterns: Factory Method, Builder, Decorator

Generalities about design patterns

Def1: Reusable solutions to commonly occurring problems.

Def2: OO design patterns are descriptions of communicating objects and classes that are customized to solve a

general design problem in a particular context.

Each pattern has:

· name

· problem – when to apply the problem

· solution – elements that make up the design, relationships, responsibilities and collaborations

· consequences – results and trade-offs of applying the pattern

Reference:

The course lectures: http://www.serbanati.com/poli/Lecture_Notes/ARCH/ARCH_Chap1.pdf

https://www.oodesign.com/

https://medium.com/@ronnieschaniel/object-oriented-design-patterns-explained-using-practical-examples-

84807445b092

https://medium.com/@adeshsrivastava0/decorator-design-patterns-3d6ed6d5aba9

Please, read descriptions for Factory Method, Builder, and Decorator from references.

Factory Method

Factory Method Pattern says that just define an interface or abstract class for creating an object but let the subclasses

decide which class to instantiate. Use a Factory Design Pattern :

• When a class doesn't know what sub-classes will be required to create

• When a class wants that its sub-classes specify the objects to be created.

• When the parent classes choose the creation of objects to its sub-classes.

Advantages:

• Factory Method Pattern allows the sub-classes to choose the type of objects to create.

• It promotes the loose-coupling by eliminating the need to bind application-specific classes into the code. That

means the code interacts solely with the resultant interface or abstract class, so that it will work with any

classes that implement that interface or that extends that abstract class.

Builder

In general, we keep the object construction code such as instantiation and initialization within the object as a part of

its constructor. This approach leads to the high coupling. It is suitable for small systems with lower object

dependencies and lesser object representations or sub-classes.

When the roles and responsibilities get heavier for one object, the creation of that object becomes complex and

messy. The object itself may get bulky, and low in modularity. At the same time object might need to take different

forms to fulfill client requirements. Hence, it needs additional input parameters to get the required results. As a result,

the number of constructor parameters increases. This may lead to the problem of ‘Telescoping Constructor’ pattern. It

is an anti-pattern where the complexity caused due to the increased number of constructor parameters. Higher

parameters lead problems like difficulty in selecting, remembering the correct order, and purpose of each parameter.

In addition, it creates problems in selecting the suitable constructor for the required scenario.The Builder pattern

avoids such situations.

Builder pattern is a creational design pattern. The builder pattern suggests an approach to remove the construction

process from the object and hand over that process to a separate class. That separate class is ‘Builder’. Custom

implementations can have more than one builder class to create different representations.

The main intention of the builder pattern is to create complex objects by separating the construction process from its

representation so that the same construction process can create different representations. This pattern enables the

polymorphism by providing an effective solution for creating different forms of an object while using a consistent

construction process: the process of constructing a complex object should be generic. That is different forms can use

the same flow of steps to create the objects. In this case, a separate entity that called the ‘Builder’ do the object

creation and the client can use the ‘Builder’ to create an object with any preference. Hence, the object can take

different forms depending on the applied input parameters.

Decorator

When we subclass a parent class, there might be multiple combination of classes resulting in a class

explosion. Although inheritance is a foundational pillar of Object-Oriented Programming, completely relying on it for

structuring classes will lead to class explosion. So, it does not seem always an elegant solution and obviously is hard to

maintain if the number of subclasses exceeds. What if there was a way to reduce the number of subclasses we create

for every variation of an object? That would be a lot better solution and that is what the decorator design pattern has

to offer. The approach is to make objects acquire responsibilities (feature, variation, combination, additional

functionality) at run time.

Decorator pattern is a structural design pattern that can be used to add additional behavior to objects at runtime. The

role of the Decorator pattern is to provide a way of attaching new state and behavior to an object dynamically. The

object does not know it is being “decorated,” which makes this a useful pattern for evolving systems. A key

implementation point in the Decorator pattern is that decorators both inherit the original class and contain an

instantiation of it.

Advantages:

1. Decorator pattern solves the class explosion problem. We did not create subclasses for every type of the base

class objects.

2. We can easily extend a class without modifying other classes.

3. We can wrap the components with any number of decorators .

Exercises

Factory Method

Exercise 1

Consider we want to implement a notification service (Notification) using three different notifications types: email,

SMS, and push. Let model the creation of a notification object of any type using a unique Notification class/interface

having a method notifyUser().

End of exercise 1

Builder

Exercise 2

Consider the case of a class representing the Nutrition Facts label that appears on packaged foods. These labels have a

few required fields—serving size, servings per container, and calories per serving— and more than twenty optional

fields—total fat, saturated fat, trans fat, cholesterol, sodium, and so on. Most products have nonzero values for only a

few of these optional fields.

Use Builder design pattern to generate such labels for different kinds of Nutrition Facts.

End of exercise 2

Decorator

Exercise 3

 Assume that the Photo class was written with draw() as a plain (concrete) method that simply displays a photo with

its specified dimensions and that cannot be altered. We want to use this class for printing an album where the photos

are diversified by framing them into borders of various formats (as color or weight). Design the UML class diagram

that models the photo adornment.

End of exercise 3

